Hydrodynamic Analysis of Payload Bay Berthing for Underwater Vehicles

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Zachary L. Cooper-Baldock;Paulo E. Santos;Russell S. A. Brinkworth;Karl Sammut
{"title":"Hydrodynamic Analysis of Payload Bay Berthing for Underwater Vehicles","authors":"Zachary L. Cooper-Baldock;Paulo E. Santos;Russell S. A. Brinkworth;Karl Sammut","doi":"10.1109/JOE.2024.3352714","DOIUrl":null,"url":null,"abstract":"The development of extra-large uncrewed underwater vehicles (XLUUVs) presents an opportunity for transporting smaller uncrewed or autonomous underwater vehicles (UUV/AUVs) over long distances, within an XLUUV's payload bay, enabling energy-constrained AUVs to spend longer periods on station rather than in transit to-and-from their operational areas. Existing launch and recovery techniques for AUV platforms have focused on the use of static docks, towed docks, and surface vehicle dock recovery. This article seeks to determine the optimal approach configuration and feasibility of recovering an AUV, via an XLUUV's payload bay, while underway. Optimality was assessed via an analysis of drag, pressure, turbulence, and flow-field phenomena exerted on the AUV undertaking berthing. To make these determinations, a converged and validated computational fluid dynamics simulation was performed using ANSYS Fluent. The simulation assessed two variations to the AUV's approach: path-aligned and flow-aligned, with respect to the AUV's bow. These simulations were repeated across three different speeds and trajectories. The most optimal approach was identified to be the 1 knot, flow-aligned, high steepness trajectory. This approach correlated with reduced propulsion induced effects, more consistent lift and drag effects, and reduced turbulence intensity, kinetic energy, and vortical effects when compared with the other approaches under analysis.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 3","pages":"727-748"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10499968/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of extra-large uncrewed underwater vehicles (XLUUVs) presents an opportunity for transporting smaller uncrewed or autonomous underwater vehicles (UUV/AUVs) over long distances, within an XLUUV's payload bay, enabling energy-constrained AUVs to spend longer periods on station rather than in transit to-and-from their operational areas. Existing launch and recovery techniques for AUV platforms have focused on the use of static docks, towed docks, and surface vehicle dock recovery. This article seeks to determine the optimal approach configuration and feasibility of recovering an AUV, via an XLUUV's payload bay, while underway. Optimality was assessed via an analysis of drag, pressure, turbulence, and flow-field phenomena exerted on the AUV undertaking berthing. To make these determinations, a converged and validated computational fluid dynamics simulation was performed using ANSYS Fluent. The simulation assessed two variations to the AUV's approach: path-aligned and flow-aligned, with respect to the AUV's bow. These simulations were repeated across three different speeds and trajectories. The most optimal approach was identified to be the 1 knot, flow-aligned, high steepness trajectory. This approach correlated with reduced propulsion induced effects, more consistent lift and drag effects, and reduced turbulence intensity, kinetic energy, and vortical effects when compared with the other approaches under analysis.
水下航行器有效载荷湾停泊的水动力分析
超大型无人潜航器(XLUUV)的发展为在 XLUUV 的有效载荷舱内长距离运输较小的无人潜航器或自主潜航器(UUV/AUV)提供了机会,使能源受限的 AUV 能够在作业区停留更长时间,而不是在往返作业区的途中。现有的 AUV 平台发射和回收技术主要集中在使用静态船坞、拖曳船坞和水面车辆船坞回收。本文旨在确定在航行中通过 XLUUV 的有效载荷舱回收 AUV 的最佳方法配置和可行性。通过分析靠泊过程中 AUV 所受的阻力、压力、湍流和流场现象,对最佳方案进行了评估。为了确定这些参数,我们使用 ANSYS Fluent 进行了计算流体动力学模拟,并对模拟结果进行了收敛和验证。该模拟评估了 AUV 接近方式的两种变化:相对于 AUV 船首的路径对齐和流动对齐。这些模拟在三种不同的速度和轨迹下重复进行。结果表明,最理想的方式是 1 节、流线对齐、高陡度轨迹。与分析中的其他方法相比,这种方法减少了推进诱导效应,使升力和阻力效应更加一致,并降低了湍流强度、动能和涡流效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信