Real-Time In-Situ Passive Acoustic Array Beamforming From the AutoNaut Wave-Propelled Uncrewed Surface Vessel

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Alfie Anthony Treloar;Hugh Maclean;Jan Bujalka;Jon Narramore;Ben Thomas;Philippe Blondel;Alan Hunter
{"title":"Real-Time In-Situ Passive Acoustic Array Beamforming From the AutoNaut Wave-Propelled Uncrewed Surface Vessel","authors":"Alfie Anthony Treloar;Hugh Maclean;Jan Bujalka;Jon Narramore;Ben Thomas;Philippe Blondel;Alan Hunter","doi":"10.1109/JOE.2024.3365169","DOIUrl":null,"url":null,"abstract":"This article presents the first demonstration of beamforming, detection, and bearing estimation of an underwater acoustic source from an eight-element thin line hydrophone array towed behind the AutoNaut wave-propelled uncrewed surface vessel. This has been achieved in situ and in real time during an experimental sea trial off the coast of Plymouth, U.K. A controlled acoustic source was towed from a support vessel while emitting seven tonals with frequencies between 480–1630 Hz and source levels between 93–126 dB. This allowed the detection performance of the array to be assessed and demonstrated for an acoustic source with known bearing and range. In postprocessing, the shape of the array was estimated using a cubic spline model, exploiting measurements from pressure and three-axis compass sensors integrated at each end of the array. The beamforming was repeated using the estimated array shape to infer the hydrophone positions, which resulted in a median improvement of 0.38 dB and maximum of 5.8 dB in the MUSIC beamforming output, and a potential reduction in the left/right bearing estimation ambiguities. The outcomes of this work demonstrate that the AutoNaut is an effective platform for towed array passive acoustic monitoring.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 3","pages":"713-726"},"PeriodicalIF":3.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10496484/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the first demonstration of beamforming, detection, and bearing estimation of an underwater acoustic source from an eight-element thin line hydrophone array towed behind the AutoNaut wave-propelled uncrewed surface vessel. This has been achieved in situ and in real time during an experimental sea trial off the coast of Plymouth, U.K. A controlled acoustic source was towed from a support vessel while emitting seven tonals with frequencies between 480–1630 Hz and source levels between 93–126 dB. This allowed the detection performance of the array to be assessed and demonstrated for an acoustic source with known bearing and range. In postprocessing, the shape of the array was estimated using a cubic spline model, exploiting measurements from pressure and three-axis compass sensors integrated at each end of the array. The beamforming was repeated using the estimated array shape to infer the hydrophone positions, which resulted in a median improvement of 0.38 dB and maximum of 5.8 dB in the MUSIC beamforming output, and a potential reduction in the left/right bearing estimation ambiguities. The outcomes of this work demonstrate that the AutoNaut is an effective platform for towed array passive acoustic monitoring.
从 AutoNaut 波浪推进无螺钉水面舰艇实时现场无源声学阵列波束成型
本文首次展示了在 AutoNaut 波浪推进式无人驾驶水面舰艇后面拖曳的八元细线水听器阵列对水下声源的波束成形、探测和方位估计。这是在英国普利茅斯海岸外的一次实验性海试中就地实时实现的。一个受控声源由一艘支持船拖曳,同时发出频率在 480-1630 Hz 之间、声源电平在 93-126 dB 之间的七种音调。这样就可以对已知方位和范围的声源进行阵列探测性能评估和演示。在后处理过程中,利用集成在阵列两端的压力和三轴罗盘传感器的测量结果,使用三次样条模型对阵列的形状进行了估计。使用估计的阵列形状重复进行波束成形,以推断水听器的位置,从而使 MUSIC 波束成形输出的中值提高了 0.38 dB,最大值提高了 5.8 dB,并有可能减少左/右方位估计的模糊性。这项工作的成果表明,AutoNaut 是拖曳阵列被动声学监测的有效平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信