{"title":"SISC: A Feature Interaction-Based Metric for Underwater Image Quality Assessment","authors":"Xiaohui Chu;Runze Hu;Yutao Liu;Jingchao Cao;Lijun Xu","doi":"10.1109/JOE.2023.3329202","DOIUrl":null,"url":null,"abstract":"Underwater images are important in a range of image-driven applications, such as marine biology and underwater surveillance. However, underwater imaging is subject to several factors that can severely degrade image quality, i.e., light absorption and scattering within the water column. An effective underwater image quality assessment (UIQA) metric is therefore needed to accurately quantify image quality, subsequently facilitating the follow-up of underwater vision tasks. In this article, we propose a novel feature-interaction-based UIQA framework, namely, SISC, which addresses the challenges of training data scarcity and complex underwater degradation conditions. A feature refinement module is dedicatedly designed based on self-attention to implement local and nonlocal cross-spatial feature interactions. In addition, we enhance the refined features in a cross-scale fashion using upsampling and downsampling strategies based on cross-attention. With the two stages of feature refinement and feature enhancement, the proposed SISC achieves data-efficient learning and superior performance compared to existing state-of-the-art UIQA and natural IQA (images captured in air) methods, indicating its effectiveness in extracting quality-aware features from underwater images.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 2","pages":"637-648"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10376401/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Underwater images are important in a range of image-driven applications, such as marine biology and underwater surveillance. However, underwater imaging is subject to several factors that can severely degrade image quality, i.e., light absorption and scattering within the water column. An effective underwater image quality assessment (UIQA) metric is therefore needed to accurately quantify image quality, subsequently facilitating the follow-up of underwater vision tasks. In this article, we propose a novel feature-interaction-based UIQA framework, namely, SISC, which addresses the challenges of training data scarcity and complex underwater degradation conditions. A feature refinement module is dedicatedly designed based on self-attention to implement local and nonlocal cross-spatial feature interactions. In addition, we enhance the refined features in a cross-scale fashion using upsampling and downsampling strategies based on cross-attention. With the two stages of feature refinement and feature enhancement, the proposed SISC achieves data-efficient learning and superior performance compared to existing state-of-the-art UIQA and natural IQA (images captured in air) methods, indicating its effectiveness in extracting quality-aware features from underwater images.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.