Binocular Underwater Measurement With Multicolor Structured Light

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Shuaishuai Li;Xiang Gao;Zexiao Xie
{"title":"Binocular Underwater Measurement With Multicolor Structured Light","authors":"Shuaishuai Li;Xiang Gao;Zexiao Xie","doi":"10.1109/JOE.2023.3315397","DOIUrl":null,"url":null,"abstract":"This article designs an underwater binocular measurement system combining binocular vision and multicolor structured light, for the problem of autonomous grasping by underwater robots. In our solution, multiple colored stripes of structured light are projected on the surface of the object to be measured at once without the scanning process and, thus, have the advantages of high measurement accuracy, efficiency, stability, and reliability, which could realize the survey and positioning of underwater targets and guide the robotic arm to grasp the underwater targets autonomously. In this article, an underwater binocular measurement model with nonparallel and non-co-refractive surfaces is established by tracing the propagation path of light in water, and a multicolor structured light array is used to provide active visual features for the underwater object to be measured by projecting the multicolor structured light array, avoiding the limitation of the center point of monochromatic structured light, and the object could be at any position in the binocular field of view. Then, the laser strip images were separated from the background and segmented by the HSV double-threshold segmentation method; the color light stripes segmented from the left and right images were matched corresponding to their color information and position information. Finally, the feature points required for measurement are extracted from the laser stripe images taken by the left and right cameras to achieve a fast underwater survey, and through analyzing the experimental data and observing the object 3-D reconstruction effect, the effectiveness and accuracy of the underwater binocular measurement model and the underwater binocular matching algorithm established in this article are proved.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 2","pages":"649-666"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10339912/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This article designs an underwater binocular measurement system combining binocular vision and multicolor structured light, for the problem of autonomous grasping by underwater robots. In our solution, multiple colored stripes of structured light are projected on the surface of the object to be measured at once without the scanning process and, thus, have the advantages of high measurement accuracy, efficiency, stability, and reliability, which could realize the survey and positioning of underwater targets and guide the robotic arm to grasp the underwater targets autonomously. In this article, an underwater binocular measurement model with nonparallel and non-co-refractive surfaces is established by tracing the propagation path of light in water, and a multicolor structured light array is used to provide active visual features for the underwater object to be measured by projecting the multicolor structured light array, avoiding the limitation of the center point of monochromatic structured light, and the object could be at any position in the binocular field of view. Then, the laser strip images were separated from the background and segmented by the HSV double-threshold segmentation method; the color light stripes segmented from the left and right images were matched corresponding to their color information and position information. Finally, the feature points required for measurement are extracted from the laser stripe images taken by the left and right cameras to achieve a fast underwater survey, and through analyzing the experimental data and observing the object 3-D reconstruction effect, the effectiveness and accuracy of the underwater binocular measurement model and the underwater binocular matching algorithm established in this article are proved.
利用多色结构光进行双目水下测量
本文针对水下机器人的自主抓取问题,设计了一种结合双目视觉和多色结构光的水下双目测量系统。在我们的方案中,多色结构光条纹一次性投射到被测物体表面,无需扫描过程,因此具有测量精度高、效率高、稳定可靠等优点,可实现水下目标的勘测定位,引导机械臂自主抓取水下目标。本文通过追溯光在水中的传播路径,建立了非平行面和非共折射面的水下双目测量模型,并采用多色结构光阵列,通过投射多色结构光阵列为水下待测物体提供主动视觉特征,避免了单色结构光中心点的限制,物体可以在双目视场的任意位置。然后,用 HSV 双阈值分割法将激光条纹图像从背景中分离出来并进行分割;将从左右图像中分割出的彩色光条纹根据其颜色信息和位置信息进行匹配。最后,从左右摄像机拍摄的激光条纹图像中提取测量所需的特征点,实现水下快速测量,并通过分析实验数据和观察物体三维重建效果,证明了本文建立的水下双目测量模型和水下双目匹配算法的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信