Niaz Ahmed;Gang Qiao;Yahong Rosa Zheng;David Johannes Pommerenke
{"title":"Design and Implementation of Medium Access Control Protocol for Magneto-Inductive Wireless Sensor Networks Using Low Power Sensor Nodes","authors":"Niaz Ahmed;Gang Qiao;Yahong Rosa Zheng;David Johannes Pommerenke","doi":"10.1109/JOE.2023.3323039","DOIUrl":null,"url":null,"abstract":"Magneto-inductive (MI) wireless sensor networks (MIWSNs) are rapidly emerging networks that offer a wide variety of applications due to their similar performance in air, underground, and underwater mediums. With the increasing demand of using MIWSNs for different applications, the need for an efficient medium access control (MAC) protocol to better utilize the available channels also increases. This article thus realizes the need for a MAC protocol for MIWSNs and presents the design and implementation of a simple and an energy-efficient MI-MAC protocol. This article first presents the design decisions and the proposed algorithm of the MI-MAC protocol. It then discusses the implementation of the MI-MAC protocol for the two possible (sequential and simultaneous) transmit configurations available with a 3-D MI transceiver. MI-MAC implementation for both sequential and simultaneous transmit configurations are evaluated for energy consumption and throughput performance. The results show that the sequential configuration outperforms the simultaneous configuration in energy efficiency by three times, whereas simultaneous configuration outperforms the sequential configuration in terms of throughput by three times. This article, therefore, presents MI-MAC implementation for a hybrid configuration to achieve optimal performance in terms of both energy efficiency and throughput.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 2","pages":"572-582"},"PeriodicalIF":3.8000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10376405/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Magneto-inductive (MI) wireless sensor networks (MIWSNs) are rapidly emerging networks that offer a wide variety of applications due to their similar performance in air, underground, and underwater mediums. With the increasing demand of using MIWSNs for different applications, the need for an efficient medium access control (MAC) protocol to better utilize the available channels also increases. This article thus realizes the need for a MAC protocol for MIWSNs and presents the design and implementation of a simple and an energy-efficient MI-MAC protocol. This article first presents the design decisions and the proposed algorithm of the MI-MAC protocol. It then discusses the implementation of the MI-MAC protocol for the two possible (sequential and simultaneous) transmit configurations available with a 3-D MI transceiver. MI-MAC implementation for both sequential and simultaneous transmit configurations are evaluated for energy consumption and throughput performance. The results show that the sequential configuration outperforms the simultaneous configuration in energy efficiency by three times, whereas simultaneous configuration outperforms the sequential configuration in terms of throughput by three times. This article, therefore, presents MI-MAC implementation for a hybrid configuration to achieve optimal performance in terms of both energy efficiency and throughput.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.