Mathematical modeling for predicting electrical energy harvested using piezoelectric composite materials for smart system applications

IF 2.8 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Meryiem Derraz , Chouaib Ennawaoui , Hicham Mastouri , Youssef El Hmamssy , Nourredine Abouricha , Abdelkader Rjafallah , El Mehdi Laadissi , Abdelowahed Hajjaji
{"title":"Mathematical modeling for predicting electrical energy harvested using piezoelectric composite materials for smart system applications","authors":"Meryiem Derraz ,&nbsp;Chouaib Ennawaoui ,&nbsp;Hicham Mastouri ,&nbsp;Youssef El Hmamssy ,&nbsp;Nourredine Abouricha ,&nbsp;Abdelkader Rjafallah ,&nbsp;El Mehdi Laadissi ,&nbsp;Abdelowahed Hajjaji","doi":"10.1016/j.mne.2024.100253","DOIUrl":null,"url":null,"abstract":"<div><p>In the contemporary quest for sustainable energy, the potential of piezoelectric energy harvesters to convert mechanical vibrations into electrical energy has become increasingly important. This study focuses on piezoelectric composites, in particular a BaTiO<sub>3</sub>/PLA (Barium Titanate/ Polylactic Acid) system with different volume percentages of BaTiO<sub>3</sub> ceramic particles (20%, 40% and 60%), with the aim of optimizing energy conversion efficiency. A mathematical model is introduced, encompassing material attributes, mechanical loading frequencies and electrical energy outputs. The central role of mathematical modeling in predicting harvested energy is highlighted, offering insights beyond experimental limitations. The model, which is functionally dependent on the properties of the ceramic and polymer, enables the systematic exploration of various compositions and the identification of optimal material ratios. Experimental validation of the model for different strains (0.4%, 0.8% and 1%) and compositions of BaTiO<sub>3</sub>/PLA reaffirms its reliability. Notably, the highest power harvest observed is around 4.5 μW under a strain of 1% with a BaTiO<sub>3</sub> composition of 60%. With these specific numerical values, this approach merges materials science and energy technology, propelling the advancement of efficient piezoelectric materials for renewable energy applications.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100253"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000169/pdfft?md5=260daf411a495666f7d851fc90385f87&pid=1-s2.0-S2590007224000169-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the contemporary quest for sustainable energy, the potential of piezoelectric energy harvesters to convert mechanical vibrations into electrical energy has become increasingly important. This study focuses on piezoelectric composites, in particular a BaTiO3/PLA (Barium Titanate/ Polylactic Acid) system with different volume percentages of BaTiO3 ceramic particles (20%, 40% and 60%), with the aim of optimizing energy conversion efficiency. A mathematical model is introduced, encompassing material attributes, mechanical loading frequencies and electrical energy outputs. The central role of mathematical modeling in predicting harvested energy is highlighted, offering insights beyond experimental limitations. The model, which is functionally dependent on the properties of the ceramic and polymer, enables the systematic exploration of various compositions and the identification of optimal material ratios. Experimental validation of the model for different strains (0.4%, 0.8% and 1%) and compositions of BaTiO3/PLA reaffirms its reliability. Notably, the highest power harvest observed is around 4.5 μW under a strain of 1% with a BaTiO3 composition of 60%. With these specific numerical values, this approach merges materials science and energy technology, propelling the advancement of efficient piezoelectric materials for renewable energy applications.

Abstract Image

利用压电复合材料预测智能系统应用中电能采集的数学建模
在当代寻求可持续能源的过程中,压电能量收集器将机械振动转化为电能的潜力变得越来越重要。本研究侧重于压电复合材料,特别是含有不同体积百分比(20%、40% 和 60%)BaTiO3 陶瓷颗粒的 BaTiO3/PLA(钛酸钡/聚乳酸)系统,旨在优化能量转换效率。该研究引入了一个数学模型,包括材料属性、机械加载频率和电能输出。数学模型在预测收获能量方面的核心作用得到了强调,提供了超越实验限制的见解。该模型在功能上依赖于陶瓷和聚合物的属性,能够系统地探索各种成分并确定最佳材料配比。针对 BaTiO3/PLA 的不同应变(0.4%、0.8% 和 1%)和成分对模型进行的实验验证再次证明了其可靠性。值得注意的是,在应变为 1%、BaTiO3 成分为 60% 的情况下,观察到的最高功率收获约为 4.5 μW。通过这些具体的数值,这种方法将材料科学与能源技术融为一体,推动了可再生能源应用领域高效压电材料的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micro and Nano Engineering
Micro and Nano Engineering Engineering-Electrical and Electronic Engineering
CiteScore
3.30
自引率
0.00%
发文量
67
审稿时长
80 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信