Min Zhang, Shun Lan, Bing B. Yang, Hao Pan, Yi Q. Liu, Qing H. Zhang, Jun L. Qi, Di Chen, Hang Su, Di Yi, Yue Y. Yang, Rui Wei, Hong D. Cai, Hao J. Han, Lin Gu, Ce-Wen Nan, Yuan-Hua Lin
{"title":"Ultrahigh energy storage in high-entropy ceramic capacitors with polymorphic relaxor phase","authors":"Min Zhang, Shun Lan, Bing B. Yang, Hao Pan, Yi Q. Liu, Qing H. Zhang, Jun L. Qi, Di Chen, Hang Su, Di Yi, Yue Y. Yang, Rui Wei, Hong D. Cai, Hao J. Han, Lin Gu, Ce-Wen Nan, Yuan-Hua Lin","doi":"10.1126/science.adl2931","DOIUrl":null,"url":null,"abstract":"<div >Ultrahigh–power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO<sub>3</sub>)–based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"384 6692","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adl2931","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrahigh–power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)–based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.