{"title":"Improved Non-enzymatic Glucose Sensors of ZnO Nanorods by Adsorb Pt Nanoparticles","authors":"Yi-Hsing Liu;Sheng-Joue Young;Cheng-Yen Hsien;Yen-Lin Chu;Zi-Hao Wang;Shoou-Jinn Chang","doi":"10.1109/TNANO.2024.3382635","DOIUrl":null,"url":null,"abstract":"The study proposed simple methods with hydrothermal method and physical vapor deposition coating technique (sputter coater) to prepare Pt nanoparticles attach on ZnO nanorods, and then applied in non-enzymatic glucose sensor. Glucose sensing is tested using electrochemical measurement, including cyclic voltammetry and amperometry method. In cyclic voltammetry measurement, the sensitivity of ZnO and Pt/ZnO NRs sensor are 5.0273 and 32.0527 μA/cm\n<sup>2</sup>\n-mM when an applied potential at 0.1 V, which is carried out different glucose concentration from 0 mM to 8 mM. For observing the stability and selectivity, we were used the amperometry method to measure various glucose concentration and interfering species (ascorbic acid and uric acid). It is demonstrated that the Pt/ZnO NRs sensor exhibited excellent stability and anti-interference performance.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"303-310"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10487988/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The study proposed simple methods with hydrothermal method and physical vapor deposition coating technique (sputter coater) to prepare Pt nanoparticles attach on ZnO nanorods, and then applied in non-enzymatic glucose sensor. Glucose sensing is tested using electrochemical measurement, including cyclic voltammetry and amperometry method. In cyclic voltammetry measurement, the sensitivity of ZnO and Pt/ZnO NRs sensor are 5.0273 and 32.0527 μA/cm
2
-mM when an applied potential at 0.1 V, which is carried out different glucose concentration from 0 mM to 8 mM. For observing the stability and selectivity, we were used the amperometry method to measure various glucose concentration and interfering species (ascorbic acid and uric acid). It is demonstrated that the Pt/ZnO NRs sensor exhibited excellent stability and anti-interference performance.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.