{"title":"Hand-held GPU accelerated device for multiclass classification of X-ray images using CNN model","authors":"K.G. Satheeshkumar , V. Arunachalam , S. Deepika","doi":"10.1016/j.micpro.2024.105046","DOIUrl":null,"url":null,"abstract":"<div><p>Chest X-ray (CXR) images are the primary investigation aid for many lung diseases and their follow-ups. For diagnosis of SARS-CoV-2, RT–PCR test and chest Computed Tomography (CT) are commonly used but both face false negatives for ruling out the infection. So, there is a demanding need for developing a system combined with Artificial Intelligence (AI) and CXR imaging to detect COVID-19 patients to avoid its spread. Here, a robust and efficient handheld device is proposed. It uses the computational power of the Graphics Processing Unit (GPU) and pre-trained deep learning models for analyzing the CXR images. A Resnet-50 CNN model is deployed on an NVIDIA Jetson Nano GPU module for the real-time classification of COVID-19, Tuberculosis, and Normal using CXR images. The device can perform real-time classification of CXR images from a portable X-ray machine and classify the image into one of the above categories. For the extensive training, a database of 680 COVID-19, 1230 Tuberculosis, and 1050 normal CXR images are extracted by combining several global databases like Kaggle, SIRM, RSNA, and Radiopaedia. The classification accuracy, precision, and loss rate were 0.9879, 0.9758, and 0.0196 respectively and our model would improve with larger data sets. The highly accurate and high-performance GPU device significantly plays a far-reaching role in COVID-19 diagnosis using Chest X-ray, which could be beneficial to triage the health system and to combat the outbreak of COVID-19.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"106 ","pages":"Article 105046"},"PeriodicalIF":1.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000413","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Chest X-ray (CXR) images are the primary investigation aid for many lung diseases and their follow-ups. For diagnosis of SARS-CoV-2, RT–PCR test and chest Computed Tomography (CT) are commonly used but both face false negatives for ruling out the infection. So, there is a demanding need for developing a system combined with Artificial Intelligence (AI) and CXR imaging to detect COVID-19 patients to avoid its spread. Here, a robust and efficient handheld device is proposed. It uses the computational power of the Graphics Processing Unit (GPU) and pre-trained deep learning models for analyzing the CXR images. A Resnet-50 CNN model is deployed on an NVIDIA Jetson Nano GPU module for the real-time classification of COVID-19, Tuberculosis, and Normal using CXR images. The device can perform real-time classification of CXR images from a portable X-ray machine and classify the image into one of the above categories. For the extensive training, a database of 680 COVID-19, 1230 Tuberculosis, and 1050 normal CXR images are extracted by combining several global databases like Kaggle, SIRM, RSNA, and Radiopaedia. The classification accuracy, precision, and loss rate were 0.9879, 0.9758, and 0.0196 respectively and our model would improve with larger data sets. The highly accurate and high-performance GPU device significantly plays a far-reaching role in COVID-19 diagnosis using Chest X-ray, which could be beneficial to triage the health system and to combat the outbreak of COVID-19.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.