Be My Guesses: The interplay between side-channel leakage metrics

IF 1.9 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Julien Béguinot , Wei Cheng , Sylvain Guilley , Olivier Rioul
{"title":"Be My Guesses: The interplay between side-channel leakage metrics","authors":"Julien Béguinot ,&nbsp;Wei Cheng ,&nbsp;Sylvain Guilley ,&nbsp;Olivier Rioul","doi":"10.1016/j.micpro.2024.105045","DOIUrl":null,"url":null,"abstract":"<div><p>In a theoretical context of side-channel attacks, optimal bounds between success rate, guessing entropy and statistical distance are derived with a simple majorization (Schur-concavity) argument. They are further theoretically refined for different versions of the classical Hamming weight leakage model, in particular assuming a priori equiprobable secret keys and additive white Gaussian measurement noise. Closed-form expressions and numerical computation are given. A study of the impact of the choice of the substitution box with respect to side-channel resistance reveals that its nonlinearity tends to homogenize the expressivity of success rate, guessing entropy and statistical distance. The intriguing approximate relation between guessing entropy and success rate <span><math><mrow><mi>G</mi><mi>E</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi>S</mi><mi>R</mi></mrow></math></span> is observed in the case of 8-bit bytes and low noise. The exact relation between guessing entropy, statistical distance and alphabet size <span><math><mrow><mi>G</mi><mi>E</mi><mo>=</mo><mfrac><mrow><mi>M</mi><mo>+</mo><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>−</mo><mfrac><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></mfrac><mi>S</mi><mi>D</mi></mrow></math></span> for deterministic leakages and equiprobable keys is proved.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"107 ","pages":"Article 105045"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124000401","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

In a theoretical context of side-channel attacks, optimal bounds between success rate, guessing entropy and statistical distance are derived with a simple majorization (Schur-concavity) argument. They are further theoretically refined for different versions of the classical Hamming weight leakage model, in particular assuming a priori equiprobable secret keys and additive white Gaussian measurement noise. Closed-form expressions and numerical computation are given. A study of the impact of the choice of the substitution box with respect to side-channel resistance reveals that its nonlinearity tends to homogenize the expressivity of success rate, guessing entropy and statistical distance. The intriguing approximate relation between guessing entropy and success rate GE=1/SR is observed in the case of 8-bit bytes and low noise. The exact relation between guessing entropy, statistical distance and alphabet size GE=M+12M2SD for deterministic leakages and equiprobable keys is proved.

Abstract Image

由我猜测侧信道泄漏指标之间的相互作用
在侧信道攻击的理论背景下,通过简单的大化(舒尔凹)论证,得出了成功率、猜测熵和统计距离之间的最佳界限。针对不同版本的经典汉明权重泄漏模型,特别是假设先验等价密钥和加性白高斯测量噪声,对它们进行了进一步的理论改进。给出了闭式表达式和数值计算。通过研究替代盒的选择对侧信道阻力的影响,发现其非线性倾向于使成功率、猜测熵和统计距离的表现力趋于一致。在 8 位字节和低噪声的情况下,可以观察到猜测熵和成功率 GE=1/SR 之间有趣的近似关系。对于确定性泄漏和等价密钥,证明了猜测熵、统计距离和字母大小 GE=M+12-M2SD 之间的精确关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microprocessors and Microsystems
Microprocessors and Microsystems 工程技术-工程:电子与电气
CiteScore
6.90
自引率
3.80%
发文量
204
审稿时长
172 days
期刊介绍: Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC). Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信