{"title":"A structural role for SynGAP","authors":"Darran Yates","doi":"10.1038/s41583-024-00815-z","DOIUrl":null,"url":null,"abstract":"The synaptic protein SynGAP exerts its effects on synaptic plasticity via a structural role rather than its GTPase-activating protein activity.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 5","pages":"287-287"},"PeriodicalIF":28.7000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-024-00815-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The synaptic protein SynGAP exerts its effects on synaptic plasticity via a structural role rather than its GTPase-activating protein activity.
期刊介绍:
Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.