{"title":"Dependence of Structural Design on Effective Young's Modulus of Ti/Au Multi-layered Micro-cantilevers","authors":"Shunkai Watanabe , Tomoyuki Kurioka , Chun-Yi Chen , Tso-Fu Mark Chang , Akira Onishi , Parthojit Chakraborty , Katsuyuki Machida , Hiroyuki Ito , Yoshihiro Miyake , Masato Sone","doi":"10.1016/j.mne.2024.100249","DOIUrl":null,"url":null,"abstract":"<div><p>Gold-based micro-electro-mechanical-systems (Au-MEMS) capacitive accelerometers can simultaneously realize high sensitivity and miniaturization because of the high mass density of Au. In order to further improve the sensitivity of the Au-MEMS capacitive accelerometers, Young's modulus of the cantilever-like spring part connected to the movable component is a key parameter. Considering the size effect in the mechanical property of metallic materials on micro-scale, the design of the spring part is expected to reflect their Young's modulus; that is, effective Young's modulus (<em>E</em><sub>eff</sub>). In this study, we clarify effects of the structural designs of the Au-based micro-cantilevers on their <em>E</em><sub>eff</sub> by experiments and finite element analyses (FEA) simulations. The <em>E</em><sub>eff</sub> of the Au micro-cantilevers having Ti/Au multi-layered structures is evaluated by resonance frequency method, which demonstrates the key structural parameters affecting their <em>E</em><sub>eff</sub>. The FEA calculations show a consistent trend with that observed in the experimental results.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100249"},"PeriodicalIF":2.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000121/pdfft?md5=9023396f9b43780109efb15a52677e42&pid=1-s2.0-S2590007224000121-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590007224000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Gold-based micro-electro-mechanical-systems (Au-MEMS) capacitive accelerometers can simultaneously realize high sensitivity and miniaturization because of the high mass density of Au. In order to further improve the sensitivity of the Au-MEMS capacitive accelerometers, Young's modulus of the cantilever-like spring part connected to the movable component is a key parameter. Considering the size effect in the mechanical property of metallic materials on micro-scale, the design of the spring part is expected to reflect their Young's modulus; that is, effective Young's modulus (Eeff). In this study, we clarify effects of the structural designs of the Au-based micro-cantilevers on their Eeff by experiments and finite element analyses (FEA) simulations. The Eeff of the Au micro-cantilevers having Ti/Au multi-layered structures is evaluated by resonance frequency method, which demonstrates the key structural parameters affecting their Eeff. The FEA calculations show a consistent trend with that observed in the experimental results.