Influence of RF power in the sputter deposition of amorphous InGaZnO film on the transient drain current of amorphous InGaZnO thin-film transistors

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Da Yeon Lee , Jingyu Park , Sangwon Lee, Seung Joo Myoung, Hyunkyu Lee, Jong-Ho Bae, Sung-Jin Choi, Dong Myong Kim, Changwook Kim, Dae Hwan Kim
{"title":"Influence of RF power in the sputter deposition of amorphous InGaZnO film on the transient drain current of amorphous InGaZnO thin-film transistors","authors":"Da Yeon Lee ,&nbsp;Jingyu Park ,&nbsp;Sangwon Lee,&nbsp;Seung Joo Myoung,&nbsp;Hyunkyu Lee,&nbsp;Jong-Ho Bae,&nbsp;Sung-Jin Choi,&nbsp;Dong Myong Kim,&nbsp;Changwook Kim,&nbsp;Dae Hwan Kim","doi":"10.1016/j.sse.2024.108921","DOIUrl":null,"url":null,"abstract":"<div><p>The device electrical and transient current characteristics of the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) are comprehensively investigated according to the radio-frequency (RF) power during the sputter-deposition of IGZO active film. The RF power dependencies of the oxygen vacancy (V<sub>O</sub>) concentration in IGZO and the surface morphology of IGZO film are analyzed through X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). According to the RF power change in the range of 100 ∼ 250 W, the optimal point in terms of threshold voltage (V<sub>T</sub>), ON current (I<sub>on</sub>), field-effect mobility in the linear region (μ<sub>FE_lin</sub>), hysteresis voltage (V<sub>Hys</sub>), and the V<sub>T</sub> shift under current stress (ΔV<sub>T</sub>) is found to be 200 W. The existence of the optimal power condition originates from the RF-power dependencies of the electron carrier concentration, the density of electron traps in gate insulator (GI), and the interface trap density related to surface roughness.</p><p>Furthermore, compared to the direct current (DC) current stress (CS) condition, it is found that when V<sub>GS</sub> rises rapidly, a total transient current ΔI<sub>D</sub> can be decomposed into three components, i.e., ΔI<sub>OS</sub>, ΔI<sub>BOOST</sub>, ΔI<sub>DEG</sub>. While ΔI<sub>OS</sub> is attributed to the non-quasi static Fermi-level rising, ΔI<sub>BOOST</sub> and ΔI<sub>DEG</sub> result from the donor creation in IGZO and the electron trapping into GI and interface. Noticeably, the occurrence level of each component changes sensitively according to RF power.</p><p>Our result suggests that the 200 W device has the least overshoot of transient current and shows the best reliability in terms of deterioration due to transient current characteristics.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108921"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000704","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The device electrical and transient current characteristics of the amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) are comprehensively investigated according to the radio-frequency (RF) power during the sputter-deposition of IGZO active film. The RF power dependencies of the oxygen vacancy (VO) concentration in IGZO and the surface morphology of IGZO film are analyzed through X-ray photoelectron spectroscopy (XPS) and atomic force microscope (AFM). According to the RF power change in the range of 100 ∼ 250 W, the optimal point in terms of threshold voltage (VT), ON current (Ion), field-effect mobility in the linear region (μFE_lin), hysteresis voltage (VHys), and the VT shift under current stress (ΔVT) is found to be 200 W. The existence of the optimal power condition originates from the RF-power dependencies of the electron carrier concentration, the density of electron traps in gate insulator (GI), and the interface trap density related to surface roughness.

Furthermore, compared to the direct current (DC) current stress (CS) condition, it is found that when VGS rises rapidly, a total transient current ΔID can be decomposed into three components, i.e., ΔIOS, ΔIBOOST, ΔIDEG. While ΔIOS is attributed to the non-quasi static Fermi-level rising, ΔIBOOST and ΔIDEG result from the donor creation in IGZO and the electron trapping into GI and interface. Noticeably, the occurrence level of each component changes sensitively according to RF power.

Our result suggests that the 200 W device has the least overshoot of transient current and shows the best reliability in terms of deterioration due to transient current characteristics.

非晶 InGaZnO 薄膜溅射沉积过程中的射频功率对非晶 InGaZnO 薄膜晶体管瞬态漏极电流的影响
根据 IGZO 活性薄膜溅射沉积过程中的射频(RF)功率,全面研究了非晶铟镓锌氧化物(a-IGZO)薄膜晶体管(TFT)的器件电气特性和瞬态电流特性。通过 X 射线光电子能谱(XPS)和原子力显微镜(AFM)分析了射频功率对 IGZO 中氧空位(VO)浓度和 IGZO 薄膜表面形貌的影响。根据 100 ∼ 250 W 范围内的射频功率变化,发现阈值电压 (VT)、导通电流 (Ion)、线性区场效应迁移率 (μFE_lin)、滞后电压 (VHys) 和电流应力下的 VT 漂移 (ΔVT)的最佳点为 200 W。最佳功率条件的存在源于电子载流子浓度、栅极绝缘体(GI)中的电子陷阱密度以及与表面粗糙度相关的界面陷阱密度的射频功率依赖性。此外,与直流(DC)电流应力(CS)条件相比,研究发现当 VGS 快速上升时,总瞬态电流 ΔID 可分解为三个分量,即、δios, δiboost, δideg。ΔIOS 是由于非准静态费米级上升,而 ΔIBOOST 和 ΔIDEG 则是由于 IGZO 中的供体产生以及电子俘获到 GI 和界面。我们的结果表明,200 W 器件的瞬态电流过冲最小,在瞬态电流特性导致的劣化方面显示出最佳的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信