PMIM: generating high-resolution air pollution data via masked image modeling

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mengyu Wang, Chongke Bi, Lu Yang, Xiaobin Qiu, Yunlong Li, Ce Yu
{"title":"PMIM: generating high-resolution air pollution data via masked image modeling","authors":"Mengyu Wang, Chongke Bi, Lu Yang, Xiaobin Qiu, Yunlong Li, Ce Yu","doi":"10.1007/s12650-024-00965-3","DOIUrl":null,"url":null,"abstract":"<p>Air pollution data provides important information on air quality, which can be used to assess the impact of atmospheric pollution on human health, the environment, and the economy, as well as to develop corresponding policies and measures to reduce pollutant emissions and improve air quality. In this paper, we propose a novel approach to improve the resolution of meteorological data via masked image modeling (PMIM) to generate high-resolution air pollution data. In order to apply the image masking modeling to process air pollution data, we convert the data format and use radial basis function visualization to generate smooth distribution maps of air pollution data. To generate high-resolution air pollution data, we design several different masking strategies and use the masked image modeling to simulate the reconstruction process from low-resolution grid data to high-resolution grid data, obtaining the reconstructed high-resolution grid images. Finally, we use the mapping relationship between the pixel colors of the reconstructed images and the air pollution data to generate high-resolution air pollution concentration data. In order to verify the effectiveness of the proposed method, we conduct comparative experiments using different masking strategies and test air pollution data of different resolutions. The results show that our method has good applicability and effectiveness in different situations.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":54756,"journal":{"name":"Journal of Visualization","volume":"13 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12650-024-00965-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Air pollution data provides important information on air quality, which can be used to assess the impact of atmospheric pollution on human health, the environment, and the economy, as well as to develop corresponding policies and measures to reduce pollutant emissions and improve air quality. In this paper, we propose a novel approach to improve the resolution of meteorological data via masked image modeling (PMIM) to generate high-resolution air pollution data. In order to apply the image masking modeling to process air pollution data, we convert the data format and use radial basis function visualization to generate smooth distribution maps of air pollution data. To generate high-resolution air pollution data, we design several different masking strategies and use the masked image modeling to simulate the reconstruction process from low-resolution grid data to high-resolution grid data, obtaining the reconstructed high-resolution grid images. Finally, we use the mapping relationship between the pixel colors of the reconstructed images and the air pollution data to generate high-resolution air pollution concentration data. In order to verify the effectiveness of the proposed method, we conduct comparative experiments using different masking strategies and test air pollution data of different resolutions. The results show that our method has good applicability and effectiveness in different situations.

Graphical abstract

Abstract Image

PMIM:通过遮蔽图像建模生成高分辨率空气污染数据
空气污染数据提供了有关空气质量的重要信息,可用于评估大气污染对人类健康、环境和经济的影响,以及制定相应的政策和措施来减少污染物排放和改善空气质量。在本文中,我们提出了一种通过掩蔽图像建模(PMIM)提高气象数据分辨率的新方法,以生成高分辨率的空气污染数据。为了将图像遮蔽建模应用于处理空气污染数据,我们转换了数据格式,并使用径向基函数可视化生成了空气污染数据的平滑分布图。为了生成高分辨率的空气污染数据,我们设计了几种不同的遮挡策略,并利用遮挡图像建模模拟了从低分辨率网格数据到高分辨率网格数据的重建过程,得到了重建后的高分辨率网格图像。最后,我们利用重建图像的像素颜色与空气污染数据之间的映射关系,生成高分辨率的空气污染浓度数据。为了验证所提方法的有效性,我们使用不同的遮挡策略和不同分辨率的空气污染数据进行了对比实验。结果表明,我们的方法在不同情况下具有良好的适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Visualization
Journal of Visualization COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
CiteScore
3.40
自引率
5.90%
发文量
79
审稿时长
>12 weeks
期刊介绍: Visualization is an interdisciplinary imaging science devoted to making the invisible visible through the techniques of experimental visualization and computer-aided visualization. The scope of the Journal is to provide a place to exchange information on the latest visualization technology and its application by the presentation of latest papers of both researchers and technicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信