Impact of JFET width on conduction characteristic for p-channel SiC IGBT

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Kunhui Xu , Xiaoli Tian , Wei Wei , Xinhua Wang , Yun Bai , Chengyue Yang , Yidan Tang , Chengzhan Li , Xinyu Liu , Hong Chen
{"title":"Impact of JFET width on conduction characteristic for p-channel SiC IGBT","authors":"Kunhui Xu ,&nbsp;Xiaoli Tian ,&nbsp;Wei Wei ,&nbsp;Xinhua Wang ,&nbsp;Yun Bai ,&nbsp;Chengyue Yang ,&nbsp;Yidan Tang ,&nbsp;Chengzhan Li ,&nbsp;Xinyu Liu ,&nbsp;Hong Chen","doi":"10.1016/j.sse.2024.108907","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, the mechanism analysis of the impact of the <em>L</em><sub>JFET</sub> on the conduction characteristic of SiC IGBT is verified through simulation results and actual tests. Planar p-channel SiC IGBTs with different <em>L</em><sub>JFET</sub> including 3.2 μm, 10 μm, and 12 μm are fabricated and tested for trend verification, and test results are fit with simulation. Under the same conditions, when the <em>L</em><sub>JFET</sub> increases from 3 μm to 10 μm, the conduction characteristic is relatively improved. Moreover, the forward voltage drop degenerates when the <em>L</em><sub>JFET</sub> increases from 10 μm to 12 μm. When the gate voltage is −20 V, the forward voltage drop of the p-channel SiC IGBT at the current density of 100 A/cm<sup>2</sup> is −10.20 V. At the same time, the breakdown voltage reaches 10 kV.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108907"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003811012400056X","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the mechanism analysis of the impact of the LJFET on the conduction characteristic of SiC IGBT is verified through simulation results and actual tests. Planar p-channel SiC IGBTs with different LJFET including 3.2 μm, 10 μm, and 12 μm are fabricated and tested for trend verification, and test results are fit with simulation. Under the same conditions, when the LJFET increases from 3 μm to 10 μm, the conduction characteristic is relatively improved. Moreover, the forward voltage drop degenerates when the LJFET increases from 10 μm to 12 μm. When the gate voltage is −20 V, the forward voltage drop of the p-channel SiC IGBT at the current density of 100 A/cm2 is −10.20 V. At the same time, the breakdown voltage reaches 10 kV.

JFET 宽度对 p 沟道 SiC IGBT 传导特性的影响
本文通过仿真结果和实际测试验证了 LJFET 对 SiC IGBT 传导特性影响的机理分析。为了验证趋势,我们制作并测试了具有不同 LJFET(包括 3.2 μm、10 μm 和 12 μm)的平面 p 沟道 SiC IGBT,测试结果与仿真结果相吻合。在相同条件下,当 LJFET 从 3 μm 增加到 10 μm 时,传导特性相对得到改善。此外,当 LJFET 从 10 μm 增大到 12 μm 时,正向压降变小。当栅极电压为 -20 V 时,电流密度为 100 A/cm2 的 p 沟道 SiC IGBT 的正向压降为 -10.20 V。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信