Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to whole-body vibration under a compressive follower preload.
IF 1.6 4区 医学Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Pengju Li, Rongchang Fu, Xiaozheng Yang, Kun Wang, Huiran Chen
{"title":"Finite element method-based study for spinal vibration characteristics of the scoliosis and kyphosis lumbar spine to whole-body vibration under a compressive follower preload.","authors":"Pengju Li, Rongchang Fu, Xiaozheng Yang, Kun Wang, Huiran Chen","doi":"10.1080/10255842.2024.2333925","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To analyze the dynamic response of the lumbosacral vertebrae structure of a scoliosis spine and a kyphosis spine under whole-body vibration.</p><p><strong>Methods: </strong>Typical Lenke4 (kyphosis) and Lenke3 (scoliosis) spinal columns were used as research objects. A finite element model of the lumbosacral vertebrae segment was established and validated based on CT scanning images. Modal, harmonic response, and transient dynamic analyses were performed on the lumbar-sacral scoliosis model using the finite element software abaqus.</p><p><strong>Results: </strong>The first four resonance frequencies of kyphosis spine extracted from modal analysis were 0.86, 1.45, 8.51, and 55.71 Hz. The first four resonance frequencies of scoliosis spine extracted from modal analysis were 0.76, 1.45, 10.51, and 63.82 Hz. The scoliosis spine had the maximum resonance amplitude in the transverse direction, while the kyphosis spine had the maximum resonance amplitude in the anteroposterior direction. The dynamic response in transient analysis exhibited periodic response over time at all levels.</p><p><strong>Conclusion: </strong>The scoliosis and kyphosis deformity of the spine significantly complicates the vibration response in the scoliosis and kyphosis areas at the top of the spine. Scoliosis and kyphosis patients are more likely to experience vibrational spinal diseases than healthy people. Besides, applying vertical cyclic loads on a malformed spine may cause further rotation of scoliosis and kyphosis deformities.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1711-1720"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2333925","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To analyze the dynamic response of the lumbosacral vertebrae structure of a scoliosis spine and a kyphosis spine under whole-body vibration.
Methods: Typical Lenke4 (kyphosis) and Lenke3 (scoliosis) spinal columns were used as research objects. A finite element model of the lumbosacral vertebrae segment was established and validated based on CT scanning images. Modal, harmonic response, and transient dynamic analyses were performed on the lumbar-sacral scoliosis model using the finite element software abaqus.
Results: The first four resonance frequencies of kyphosis spine extracted from modal analysis were 0.86, 1.45, 8.51, and 55.71 Hz. The first four resonance frequencies of scoliosis spine extracted from modal analysis were 0.76, 1.45, 10.51, and 63.82 Hz. The scoliosis spine had the maximum resonance amplitude in the transverse direction, while the kyphosis spine had the maximum resonance amplitude in the anteroposterior direction. The dynamic response in transient analysis exhibited periodic response over time at all levels.
Conclusion: The scoliosis and kyphosis deformity of the spine significantly complicates the vibration response in the scoliosis and kyphosis areas at the top of the spine. Scoliosis and kyphosis patients are more likely to experience vibrational spinal diseases than healthy people. Besides, applying vertical cyclic loads on a malformed spine may cause further rotation of scoliosis and kyphosis deformities.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.