Ana I. Bonilla, Jessie Usaga, Carolina Cortés, Ana M. Pérez
{"title":"Effect of thermal treatment on selected bioactive compounds and physicochemical properties of a blackberry-soy-flaxseed beverage","authors":"Ana I. Bonilla, Jessie Usaga, Carolina Cortés, Ana M. Pérez","doi":"10.1016/j.nfs.2024.100177","DOIUrl":null,"url":null,"abstract":"<div><p>Three prototypes of a blackberry-soy-flaxseed beverage were formulated and processed by pasteurization (71.1 °C, 3 s) or commercial sterilization (heating to 87 °C followed by immediate hot-fill). The effects of heat exposure on selected bioactive compounds (total phenolics, ellagitannins, anthocyanins, isoflavones and lignans) and physicochemical properties (pH, °Brix, turbidity, viscosity and color) were evaluated. Bioactive compounds were quantified by HPLC-DAD analytical methods. No significant changes (<em>p</em> > 0.05) were observed in the contents of total phenolic compounds, ellagitannins, cyanidin-3-glucoside, isoflavones (daidzein and genistein), or lignans, regardless of the heat regime applied or the beverage formulation. The pH and soluble solids were similar among the three beverages and did not change after heat treatments. The content of cyanidin-3-malonyl-glucoside, a polyphenol, significantly decreased (<em>p</em> < 0.05) by 35–45% with the hot-fill process in all beverage prototypes. Turbidity was not significantly affected by the type of heat treatment, but the viscosity of the hot-filled beverages was significantly higher (<em>p</em> < 0.05) than that of the pasteurized and non-pasteurized prototypes. No significant differences (<em>p</em> < 0.05) in color parameters L*, a*, and b* were observed. Total color difference (DE*) values indicated differences in perceivable color among samples of the same beverage exposed to the heat processing regimes. DE* values for prototype 1 processed by pasteurization and commercial sterilization were distinct from non-pasteurized beverage. DE* values for prototypes 2 and 3 processed by pasteurization were distinct from those of the non-pasteurized beverage. Pasteurization allowed higher retention of bioactive compounds and had a lower impact on the physicochemical properties of the blackberry-soy-flaxseed beverage.</p></div>","PeriodicalId":19294,"journal":{"name":"NFS Journal","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352364624000166/pdfft?md5=5e3c38b94edc52cb5cbddc9cf3b2bdca&pid=1-s2.0-S2352364624000166-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NFS Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352364624000166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Three prototypes of a blackberry-soy-flaxseed beverage were formulated and processed by pasteurization (71.1 °C, 3 s) or commercial sterilization (heating to 87 °C followed by immediate hot-fill). The effects of heat exposure on selected bioactive compounds (total phenolics, ellagitannins, anthocyanins, isoflavones and lignans) and physicochemical properties (pH, °Brix, turbidity, viscosity and color) were evaluated. Bioactive compounds were quantified by HPLC-DAD analytical methods. No significant changes (p > 0.05) were observed in the contents of total phenolic compounds, ellagitannins, cyanidin-3-glucoside, isoflavones (daidzein and genistein), or lignans, regardless of the heat regime applied or the beverage formulation. The pH and soluble solids were similar among the three beverages and did not change after heat treatments. The content of cyanidin-3-malonyl-glucoside, a polyphenol, significantly decreased (p < 0.05) by 35–45% with the hot-fill process in all beverage prototypes. Turbidity was not significantly affected by the type of heat treatment, but the viscosity of the hot-filled beverages was significantly higher (p < 0.05) than that of the pasteurized and non-pasteurized prototypes. No significant differences (p < 0.05) in color parameters L*, a*, and b* were observed. Total color difference (DE*) values indicated differences in perceivable color among samples of the same beverage exposed to the heat processing regimes. DE* values for prototype 1 processed by pasteurization and commercial sterilization were distinct from non-pasteurized beverage. DE* values for prototypes 2 and 3 processed by pasteurization were distinct from those of the non-pasteurized beverage. Pasteurization allowed higher retention of bioactive compounds and had a lower impact on the physicochemical properties of the blackberry-soy-flaxseed beverage.
NFS JournalAgricultural and Biological Sciences-Food Science
CiteScore
11.10
自引率
0.00%
发文量
18
审稿时长
29 days
期刊介绍:
The NFS Journal publishes high-quality original research articles and methods papers presenting cutting-edge scientific advances as well as review articles on current topics in all areas of nutrition and food science. The journal particularly invites submission of articles that deal with subjects on the interface of nutrition and food research and thus connect both disciplines. The journal offers a new form of submission Registered Reports (see below). NFS Journal is a forum for research in the following areas: • Understanding the role of dietary factors (macronutrients and micronutrients, phytochemicals, bioactive lipids and peptides etc.) in disease prevention and maintenance of optimum health • Prevention of diet- and age-related pathologies by nutritional approaches • Advances in food technology and food formulation (e.g. novel strategies to reduce salt, sugar, or trans-fat contents etc.) • Nutrition and food genomics, transcriptomics, proteomics, and metabolomics • Identification and characterization of food components • Dietary sources and intake of nutrients and bioactive compounds • Food authentication and quality • Nanotechnology in nutritional and food sciences • (Bio-) Functional properties of foods • Development and validation of novel analytical and research methods • Age- and gender-differences in biological activities and the bioavailability of vitamins, minerals, and phytochemicals and other dietary factors • Food safety and toxicology • Food and nutrition security • Sustainability of food production