Powered Knee and Ankle Prosthesis Control for Adaptive Ambulation at Variable Speeds, Inclines, and Uneven Terrains.

Liam M Sullivan, Suzi Creveling, Marissa Cowan, Lukas Gabert, Tommaso Lenzi
{"title":"Powered Knee and Ankle Prosthesis Control for Adaptive Ambulation at Variable Speeds, Inclines, and Uneven Terrains.","authors":"Liam M Sullivan, Suzi Creveling, Marissa Cowan, Lukas Gabert, Tommaso Lenzi","doi":"10.1109/iros55552.2023.10342504","DOIUrl":null,"url":null,"abstract":"<p><p>Ambulation in everyday life requires walking at variable speeds, variable inclines, and variable terrains. Powered prostheses aim to provide this adaptability through control of the actuated joints. Some powered prosthesis controllers can adapt to discrete changes in speed and incline but require manual tuning to determine the control parameters, leading to poor clinical viability. Other data-driven controllers can continuously adapt to changes in speed and incline but do so by imposing the same non-amputee gait patterns for all amputee subjects, which does not consider subjective preferences and differing clinical needs of users. Here, we present a controller for powered knee and ankle prostheses that can continuously adapt to different walking speeds, inclines, and uneven terrains without enforcing a specific prosthesis position, impedance, or torque. A virtual biarticular muscle connection determines the knee flexion torque, which changes with both speed and slope. Adaptation to inclines and uneven terrains is based solely on the global shank orientation. Continuously variable damping allows for speed adaptation. Minimum-jerk programming defines the prosthesis swing trajectory at variable cadences. Experiments with one individual with an above-knee amputation suggest that the proposed controller can effectively adapt to different walking speeds, inclines, and rough terrains.</p>","PeriodicalId":74523,"journal":{"name":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"2023 ","pages":"2128-2133"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iros55552.2023.10342504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ambulation in everyday life requires walking at variable speeds, variable inclines, and variable terrains. Powered prostheses aim to provide this adaptability through control of the actuated joints. Some powered prosthesis controllers can adapt to discrete changes in speed and incline but require manual tuning to determine the control parameters, leading to poor clinical viability. Other data-driven controllers can continuously adapt to changes in speed and incline but do so by imposing the same non-amputee gait patterns for all amputee subjects, which does not consider subjective preferences and differing clinical needs of users. Here, we present a controller for powered knee and ankle prostheses that can continuously adapt to different walking speeds, inclines, and uneven terrains without enforcing a specific prosthesis position, impedance, or torque. A virtual biarticular muscle connection determines the knee flexion torque, which changes with both speed and slope. Adaptation to inclines and uneven terrains is based solely on the global shank orientation. Continuously variable damping allows for speed adaptation. Minimum-jerk programming defines the prosthesis swing trajectory at variable cadences. Experiments with one individual with an above-knee amputation suggest that the proposed controller can effectively adapt to different walking speeds, inclines, and rough terrains.

在不同速度、坡度和不平整地形下进行自适应行走的膝关节和踝关节假体动力控制。
日常生活中的行走需要在不同速度、不同坡度和不同地形下进行。动力假肢旨在通过控制驱动关节来提供这种适应性。一些动力假肢控制器可以适应速度和倾斜度的离散变化,但需要手动调整来确定控制参数,导致临床可行性较差。其他数据驱动型控制器可以持续适应速度和坡度的变化,但其方法是对所有截肢者采用相同的非截肢者步态模式,这并没有考虑使用者的主观偏好和不同的临床需求。在这里,我们介绍了一种用于膝关节和踝关节动力假肢的控制器,它可以持续适应不同的行走速度、坡度和不平坦的地形,而不会强制要求使用特定的假肢位置、阻抗或扭矩。虚拟生物关节肌肉连接决定膝关节屈曲力矩,该力矩随速度和坡度而变化。对斜坡和不平地形的适应性完全取决于整体柄的方向。连续可变的阻尼可实现速度适应。最小搏动程序定义了假肢在不同步频下的摆动轨迹。对一名膝上截肢者进行的实验表明,所提出的控制器能有效适应不同的行走速度、坡度和崎岖地形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信