Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Chia-Jen Hsu;Chia-Hung Chou;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett
{"title":"Energy Consumption and Carbon Emission Reduction in HVAC System of a Dynamic Random Access Memory (DRAM) Semiconductor Fabrication Plant (fab)","authors":"Pin-Yen Liao;Tee Lin;Omid Ali Zargar;Chia-Jen Hsu;Chia-Hung Chou;Yang-Cheng Shih;Shih-Cheng Hu;Graham Leggett","doi":"10.1109/TSM.2024.3379949","DOIUrl":null,"url":null,"abstract":"This study focuses on energy saving for a Taiwan high-tech DRAM factory as the primary research subject. Collecting operational parameters related to various facility systems and process equipment is initially performed by using the developed energy conversion factors (ECF) calculator. Moreover, innovative fab energy simulation (FES) software has been designed by Taipei Tech. This software is designed for high-tech fab energy consumption analysis. The annual energy consumption data for fabs can be calculated. This data is then converted into carbon dioxide emissions using the power carbon emission coefficient provided by the Bureau of Energy, Ministry of Economic Affairs Taiwan. In this study, five different energy-saving strategies were proposed. The energy consumption and carbon emissions distribution were evaluated to assess the benefits of those different techniques. The findings show that among the existing operational facilities, the use of an exhaust air conditioning unit with reduced enthalpy value setting, with lowered supply air temperature, demonstrates the highest energy-saving. This technique has the potential to annually reduce carbon emissions by approximately 623,158 kg CO2 and operational costs by NT\n<inline-formula> <tex-math>${\\$}$ </tex-math></inline-formula>\n 6,005,764 (189,602 U.S.\n<inline-formula> <tex-math>${\\$}$ </tex-math></inline-formula>\n). This can reduce the overall manufacturing cost and is also beneficial for the environment.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"174-184"},"PeriodicalIF":2.3000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10478210/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on energy saving for a Taiwan high-tech DRAM factory as the primary research subject. Collecting operational parameters related to various facility systems and process equipment is initially performed by using the developed energy conversion factors (ECF) calculator. Moreover, innovative fab energy simulation (FES) software has been designed by Taipei Tech. This software is designed for high-tech fab energy consumption analysis. The annual energy consumption data for fabs can be calculated. This data is then converted into carbon dioxide emissions using the power carbon emission coefficient provided by the Bureau of Energy, Ministry of Economic Affairs Taiwan. In this study, five different energy-saving strategies were proposed. The energy consumption and carbon emissions distribution were evaluated to assess the benefits of those different techniques. The findings show that among the existing operational facilities, the use of an exhaust air conditioning unit with reduced enthalpy value setting, with lowered supply air temperature, demonstrates the highest energy-saving. This technique has the potential to annually reduce carbon emissions by approximately 623,158 kg CO2 and operational costs by NT
${\$}$
6,005,764 (189,602 U.S.
${\$}$
). This can reduce the overall manufacturing cost and is also beneficial for the environment.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.