{"title":"Implementation of a Quorum-Sensing System for Highly Efficient Biosynthesis of Lacto-N-neotetraose in Engineered Escherichia coli MG1655","authors":"Mengting Tao, Longhao Yang, Chunhua Zhao, Mingli Zhao, Wenli Zhang, Yingying Zhu* and Wanmeng Mu, ","doi":"10.1021/acs.jafc.3c09162","DOIUrl":null,"url":null,"abstract":"<p >Lacto-<i>N</i>-neotetraose (LNnT), a prominent neutral human milk oligosaccharide (HMO), serves as a pivotal structural element in complex HMO biosynthesis. Given its promising health effects for infants, the biosynthesis of LNnT is garnering greater interest. Using a previously engineered strain as a chassis, a highly effective LNnT producer was constructed. First, LNnT synthesis in <i>Escherichia coli</i> MG1655 was achieved by introducing β1,3-<i>N</i>-acetylglucosaminyltransferase LgtA and β1,4-galactosyltransferase CpsIaJ, coupled with the optimization of enzyme expression levels using various promoters. Subsequently, <i>ugd</i> underwent disruption, and the <i>galE</i> gene was enhanced by replacing its promoter with P<sub>J23119</sub> or P<sub>tac</sub>. Then, a lux-type quorum sensing (QS) system was applied to achieve varied metabolic regulation. Additionally, systematic optimization of the QS promoters was conducted to further improve the LNnT titer in the shake flask. Finally, the extracellular titer of LNnT was 20.33 g/L, accompanied by a productivity of 0.41 g/L/h.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"72 13","pages":"7179–7186"},"PeriodicalIF":5.7000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.3c09162","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lacto-N-neotetraose (LNnT), a prominent neutral human milk oligosaccharide (HMO), serves as a pivotal structural element in complex HMO biosynthesis. Given its promising health effects for infants, the biosynthesis of LNnT is garnering greater interest. Using a previously engineered strain as a chassis, a highly effective LNnT producer was constructed. First, LNnT synthesis in Escherichia coli MG1655 was achieved by introducing β1,3-N-acetylglucosaminyltransferase LgtA and β1,4-galactosyltransferase CpsIaJ, coupled with the optimization of enzyme expression levels using various promoters. Subsequently, ugd underwent disruption, and the galE gene was enhanced by replacing its promoter with PJ23119 or Ptac. Then, a lux-type quorum sensing (QS) system was applied to achieve varied metabolic regulation. Additionally, systematic optimization of the QS promoters was conducted to further improve the LNnT titer in the shake flask. Finally, the extracellular titer of LNnT was 20.33 g/L, accompanied by a productivity of 0.41 g/L/h.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.