A single neural network global I-V and C-V parameter extractor for BSIM-CMG compact model

IF 1.4 4区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jen-Hao Chen , Fredo Chavez , Chien-Ting Tung , Sourabh Khandelwal , Chenming Hu
{"title":"A single neural network global I-V and C-V parameter extractor for BSIM-CMG compact model","authors":"Jen-Hao Chen ,&nbsp;Fredo Chavez ,&nbsp;Chien-Ting Tung ,&nbsp;Sourabh Khandelwal ,&nbsp;Chenming Hu","doi":"10.1016/j.sse.2024.108898","DOIUrl":null,"url":null,"abstract":"<div><p>A global I-V and C-V BSIM-CMG parameter extraction methodology based on deep learning is proposed. 100 k training datasets were generated through Monte Carlo simulation varying 28 IV and CV model parameters in the industry-standard BSIM-CMG FinFET model. For each of the 100 k Monte Carlo-selected BSIM-CMG parameter dataset, the I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> characteristics of seven Monte Carlo-selected gate lengths ranging from 14 nm to 110 nm were generated as the input to train the parameter extraction neural network. The neural network outputs for training are the 28 model parameters’ values. The neural network's capability to extract BSIM-CMG model parameters that accurately fit TCAD-generated I<sub>D</sub>-V<sub>G</sub> and C<sub>GG</sub>-V<sub>G</sub> data over a range of gate lengths was demonstrated. This marks the first time a deep learning compact model parameter extraction flow, employing a single neural network for both I-V and C-V parameters and for a range of gate length, is presented.</p></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"216 ","pages":"Article 108898"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110124000479","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A global I-V and C-V BSIM-CMG parameter extraction methodology based on deep learning is proposed. 100 k training datasets were generated through Monte Carlo simulation varying 28 IV and CV model parameters in the industry-standard BSIM-CMG FinFET model. For each of the 100 k Monte Carlo-selected BSIM-CMG parameter dataset, the ID-VG and CGG-VG characteristics of seven Monte Carlo-selected gate lengths ranging from 14 nm to 110 nm were generated as the input to train the parameter extraction neural network. The neural network outputs for training are the 28 model parameters’ values. The neural network's capability to extract BSIM-CMG model parameters that accurately fit TCAD-generated ID-VG and CGG-VG data over a range of gate lengths was demonstrated. This marks the first time a deep learning compact model parameter extraction flow, employing a single neural network for both I-V and C-V parameters and for a range of gate length, is presented.

用于 BSIM-CMG 紧凑型模型的单一神经网络全局 I-V 和 C-V 参数提取器
本文提出了一种基于深度学习的全局 I-V 和 C-V BSIM-CMG 参数提取方法。通过蒙特卡罗仿真,改变行业标准 BSIM-CMG FinFET 模型中的 28 个 IV 和 CV 模型参数,生成了 100 k 个训练数据集。对于每 100 k 个蒙特卡洛选择的 BSIM-CMG 参数数据集,都生成了 7 个蒙特卡洛选择的栅极长度(从 14 nm 到 110 nm)的 ID-VG 和 CGG-VG 特性,作为训练参数提取神经网络的输入。神经网络的训练输出为 28 个模型参数值。神经网络提取 BSIM-CMG 模型参数的能力得到了验证,这些参数能够准确地拟合 TCAD 生成的 ID-VG 和 CGG-VG 数据,涵盖各种栅极长度。这是首次针对 I-V 和 C-V 参数以及栅极长度范围采用单一神经网络的深度学习紧凑型模型参数提取流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid-state Electronics
Solid-state Electronics 物理-工程:电子与电气
CiteScore
3.00
自引率
5.90%
发文量
212
审稿时长
3 months
期刊介绍: It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信