Dysregulation of calcium homeostasis in cancer and its role in chemoresistance.

IF 4.6 Q1 ONCOLOGY
癌症耐药(英文) Pub Date : 2024-03-15 eCollection Date: 2024-01-01 DOI:10.20517/cdr.2023.145
Neema Kumari, Narasimha Pullaguri, Subha Narayan Rath, Ashish Bajaj, Vikas Sahu, Kranti Kiran Reddy Ealla
{"title":"Dysregulation of calcium homeostasis in cancer and its role in chemoresistance.","authors":"Neema Kumari, Narasimha Pullaguri, Subha Narayan Rath, Ashish Bajaj, Vikas Sahu, Kranti Kiran Reddy Ealla","doi":"10.20517/cdr.2023.145","DOIUrl":null,"url":null,"abstract":"<p><p>Globally, cancer, as a major public health concern, poses a severe threat to people's well-being. Advanced and specialized therapies can now cure the majority of people with early-stage cancer. However, emerging resistance to traditional and novel chemotherapeutic drugs remains a serious issue in clinical medicine. Chemoresistance often leads to cancer recurrence, metastasis, and increased mortality, accounting for 90% of chemotherapy failures. Thus, it is important to understand the molecular mechanisms of chemoresistance and find novel therapeutic approaches for cancer treatment. Among the several factors responsible for chemoresistance, calcium (Ca<sup>2+</sup>) dysregulation plays a significant role in cancer progression and chemoresistance. Therefore, targeting this derailed Ca<sup>2+</sup> signalling for cancer therapy has become an emerging research area. Of note, the Ca<sup>2+</sup> signal and its proteins are a multifaceted and potent tool by which cells achieve specific outcomes. Depending on cell survival needs, Ca<sup>2+</sup> is either upregulated or downregulated in both chemosensitive and chemoresistant cancer cells. Consequently, the appropriate treatment should be selected based on Ca<sup>2+</sup> signalling dysregulation. This review discusses the role of Ca<sup>2+</sup> in cancer cells and the targeting of Ca<sup>2+</sup> channels, pumps, and exchangers. Furthermore, we have emphasised the role of Ca<sup>2+</sup> in chemoresistance and therapeutic strategies. In conclusion, targeting Ca<sup>2+</sup> signalling is a multifaceted process. Methods such as site-specific drug delivery, target-based drug-designing, and targeting two or more Ca<sup>2+</sup> proteins simultaneously may be explored; however, further clinical studies are essential to validate Ca<sup>2+</sup> blockers' anti-cancer efficacy.</p>","PeriodicalId":70759,"journal":{"name":"癌症耐药(英文)","volume":"7 ","pages":"11"},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10951838/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"癌症耐药(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20517/cdr.2023.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Globally, cancer, as a major public health concern, poses a severe threat to people's well-being. Advanced and specialized therapies can now cure the majority of people with early-stage cancer. However, emerging resistance to traditional and novel chemotherapeutic drugs remains a serious issue in clinical medicine. Chemoresistance often leads to cancer recurrence, metastasis, and increased mortality, accounting for 90% of chemotherapy failures. Thus, it is important to understand the molecular mechanisms of chemoresistance and find novel therapeutic approaches for cancer treatment. Among the several factors responsible for chemoresistance, calcium (Ca2+) dysregulation plays a significant role in cancer progression and chemoresistance. Therefore, targeting this derailed Ca2+ signalling for cancer therapy has become an emerging research area. Of note, the Ca2+ signal and its proteins are a multifaceted and potent tool by which cells achieve specific outcomes. Depending on cell survival needs, Ca2+ is either upregulated or downregulated in both chemosensitive and chemoresistant cancer cells. Consequently, the appropriate treatment should be selected based on Ca2+ signalling dysregulation. This review discusses the role of Ca2+ in cancer cells and the targeting of Ca2+ channels, pumps, and exchangers. Furthermore, we have emphasised the role of Ca2+ in chemoresistance and therapeutic strategies. In conclusion, targeting Ca2+ signalling is a multifaceted process. Methods such as site-specific drug delivery, target-based drug-designing, and targeting two or more Ca2+ proteins simultaneously may be explored; however, further clinical studies are essential to validate Ca2+ blockers' anti-cancer efficacy.

癌症中的钙平衡失调及其在化疗抗药性中的作用。
在全球范围内,癌症作为一种主要的公共健康问题,对人们的福祉构成了严重威胁。目前,先进的专业疗法可以治愈大多数早期癌症患者。然而,对传统和新型化疗药物产生的抗药性仍然是临床医学的一个严重问题。耐药性往往导致癌症复发、转移和死亡率上升,占化疗失败的 90%。因此,了解化疗耐药性的分子机制并找到新的癌症治疗方法非常重要。在导致化疗耐药性的几个因素中,钙(Ca2+)失调在癌症进展和化疗耐药性中起着重要作用。因此,针对这种脱轨的 Ca2+ 信号进行癌症治疗已成为一个新兴的研究领域。值得注意的是,Ca2+ 信号及其蛋白质是一种多方面的有效工具,细胞可通过它获得特定的结果。根据细胞生存的需要,Ca2+ 在化疗敏感和化疗耐药癌细胞中都会上调或下调。因此,应根据 Ca2+ 信号失调情况选择适当的治疗方法。本综述讨论了 Ca2+ 在癌细胞中的作用以及 Ca2+ 通道、泵和交换器的靶向作用。此外,我们还强调了 Ca2+ 在化疗耐药性和治疗策略中的作用。总之,靶向 Ca2+ 信号是一个多方面的过程。可探索的方法包括:特定部位给药、基于靶点的药物设计以及同时靶向两种或两种以上 Ca2+ 蛋白质;然而,进一步的临床研究对于验证 Ca2+ 阻滞剂的抗癌疗效至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信