Influence of posterior cruciate ligament tension on tibiofemoral and patellofemoral joint contact mechanics in cruciate-retaining total knee replacement: a combined musculoskeletal multibody and finite-element simulation.
IF 1.6 4区 医学Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jan-Oliver Sass, Kurt Johnson, Jean-Baptiste Darques, Lucas Buerstenbinder, Iman Soodmand, Rainer Bader, Maeruan Kebbach
{"title":"Influence of posterior cruciate ligament tension on tibiofemoral and patellofemoral joint contact mechanics in cruciate-retaining total knee replacement: a combined musculoskeletal multibody and finite-element simulation.","authors":"Jan-Oliver Sass, Kurt Johnson, Jean-Baptiste Darques, Lucas Buerstenbinder, Iman Soodmand, Rainer Bader, Maeruan Kebbach","doi":"10.1080/10255842.2024.2329946","DOIUrl":null,"url":null,"abstract":"<p><p>The influence of posterior cruciate ligament (PCL) tension on the clinical outcome of cruciate-retaining total knee replacement (CR-TKR) remains controversial. Various numerical approaches have been used to study this influence systematically, but the models used are limited by certain assumptions and simplifications. Therefore, the objective of this computational study was to develop a combined musculoskeletal multibody and finite-element simulation during a squat motion to 90° knee flexion with a CR-TKR design to overcome previous limitations regarding model inputs. In addition, different PCL tensions (tight, lax, resected) were modeled and the influence on tibiofemoral and resurfaced patellofemoral joint dynamics and contact stresses was evaluated. The effect of the PCL on knee joint dynamics and contact stresses was more pronounced at higher flexion angles. Tibiofemoral joint dynamics were influenced and a tight PCL induced increased posterior femoral translation during flexion. The maximum contact stress in the tibial insert increased from 20.6 MPa to 22.5 MPa for the resected and tightest PCL at 90° knee flexion. Patellofemoral joint dynamics were only slightly affected by PCL tension. However, the maximum contact stress in the patellar component decreased from 58.0 MPa to 53.7 MPa for the resected and tightest PCL at 90° knee flexion. The combination of musculoskeletal multibody and finite-element simulation is a sufficient method to comprehensively investigate knee joint dynamics and contact stresses in CR-TKR. The PCL tension after CR-TKR affects joint dynamics and contact stresses at the articulating implant surfaces.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1577-1589"},"PeriodicalIF":1.6000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2329946","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of posterior cruciate ligament (PCL) tension on the clinical outcome of cruciate-retaining total knee replacement (CR-TKR) remains controversial. Various numerical approaches have been used to study this influence systematically, but the models used are limited by certain assumptions and simplifications. Therefore, the objective of this computational study was to develop a combined musculoskeletal multibody and finite-element simulation during a squat motion to 90° knee flexion with a CR-TKR design to overcome previous limitations regarding model inputs. In addition, different PCL tensions (tight, lax, resected) were modeled and the influence on tibiofemoral and resurfaced patellofemoral joint dynamics and contact stresses was evaluated. The effect of the PCL on knee joint dynamics and contact stresses was more pronounced at higher flexion angles. Tibiofemoral joint dynamics were influenced and a tight PCL induced increased posterior femoral translation during flexion. The maximum contact stress in the tibial insert increased from 20.6 MPa to 22.5 MPa for the resected and tightest PCL at 90° knee flexion. Patellofemoral joint dynamics were only slightly affected by PCL tension. However, the maximum contact stress in the patellar component decreased from 58.0 MPa to 53.7 MPa for the resected and tightest PCL at 90° knee flexion. The combination of musculoskeletal multibody and finite-element simulation is a sufficient method to comprehensively investigate knee joint dynamics and contact stresses in CR-TKR. The PCL tension after CR-TKR affects joint dynamics and contact stresses at the articulating implant surfaces.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.