Cheng Huang, Shuang Ji, Zhenlei Chen, Tianyi Sun, Qing Guo, Yao Yan
{"title":"Identification and Analysis of Human-Exoskeleton Coupling Parameters in Lower Extremities.","authors":"Cheng Huang, Shuang Ji, Zhenlei Chen, Tianyi Sun, Qing Guo, Yao Yan","doi":"10.1109/TOH.2024.3375295","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposed linear and non-linear models for predicting human-exoskeleton coupling forces to enhance the studies of human-exoskeleton coupling dynamics. Then the parameters of these models were identified with a newly designed platform and the help of ten adult male and ten adult female volunteers (Age: 23.65 ±4.03 years, Height: 165.60 ±8.32 mm, Weight: 62.35 ±14.09 kg). Comparing the coupling force error predicted by the models with experimental measurements, one obtained a more accurate and robust prediction of the coupling forces with the non-linear model. Moreover, statistical analysis of the experimental data was performed to reveal the correlation between the coupling parameters and coupling positions and looseness. Finally, backpropagation (BP) neural network and Gaussian Process Regression (GPR) were used to predict the human-exoskeleton coupling parameters. The significance of each input parameter to the human-exoskeleton coupling parameters was assessed by analyzing the sensitivity of GPR performance to its inputs. The novelty and contribution are the establishment of the non-linear coupling model, the design of the coupling experimental platform and a regression model which provides a possibility to obtain human-exoskeleton without experimental measurement and identification. Based on this work, one can optimize control algorithm and design comfortable human-exoskeleton interaction.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3375295","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed linear and non-linear models for predicting human-exoskeleton coupling forces to enhance the studies of human-exoskeleton coupling dynamics. Then the parameters of these models were identified with a newly designed platform and the help of ten adult male and ten adult female volunteers (Age: 23.65 ±4.03 years, Height: 165.60 ±8.32 mm, Weight: 62.35 ±14.09 kg). Comparing the coupling force error predicted by the models with experimental measurements, one obtained a more accurate and robust prediction of the coupling forces with the non-linear model. Moreover, statistical analysis of the experimental data was performed to reveal the correlation between the coupling parameters and coupling positions and looseness. Finally, backpropagation (BP) neural network and Gaussian Process Regression (GPR) were used to predict the human-exoskeleton coupling parameters. The significance of each input parameter to the human-exoskeleton coupling parameters was assessed by analyzing the sensitivity of GPR performance to its inputs. The novelty and contribution are the establishment of the non-linear coupling model, the design of the coupling experimental platform and a regression model which provides a possibility to obtain human-exoskeleton without experimental measurement and identification. Based on this work, one can optimize control algorithm and design comfortable human-exoskeleton interaction.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.