Isaac Skog;Magnus Lundberg Nordenvaad;Gustaf Hendeby
{"title":"Signals-of-Opportunity-Based Hydrophone Array Shape and Orientation Estimation","authors":"Isaac Skog;Magnus Lundberg Nordenvaad;Gustaf Hendeby","doi":"10.1109/JOE.2024.3357937","DOIUrl":null,"url":null,"abstract":"A signal-of-opportunity-based method to automatically calibrate the orientations and shapes of a set of hydrophone arrays using the sound emitted from nearby ships is presented. The calibration problem is formulated as a simultaneous localization and mapping problem, where the locations, orientations, and shapes of the arrays are viewed as the unknown map states, and the position, velocity, etc., of the source as the unknown dynamic states. A sequential likelihood ratio test, together with a maximum a posteriori source location estimator, is used to automatically detect suitable sources and initialize the calibration procedure. The performance of the proposed method is evaluated using data from two 56-element hydrophone arrays. Results from two sea trials indicate that: 1) signal sources suitable for the calibration can be automatically detected; 2) the shapes and orientations of the arrays can be consistently estimated from the different data sets with shape variations of a few decimeters and orientation variations of less than 2\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n; and 3) the uncertainty bounds calculated by the calibration method are in agreement with the true calibration uncertainties. Furthermore, the bearing time record from a sea trial with an autonomous mobile underwater signal source also shows the efficacy of the proposed calibration method. In the studied scenario, the root-mean-square bearing tracking error was reduced from 4\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n to 1\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n when using the calibrated array shapes compared to assuming the arrays' to be straight lines. Also, the beamforming gain increased by approximately 1 dB.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"49 3","pages":"679-691"},"PeriodicalIF":3.8000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10473631/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
A signal-of-opportunity-based method to automatically calibrate the orientations and shapes of a set of hydrophone arrays using the sound emitted from nearby ships is presented. The calibration problem is formulated as a simultaneous localization and mapping problem, where the locations, orientations, and shapes of the arrays are viewed as the unknown map states, and the position, velocity, etc., of the source as the unknown dynamic states. A sequential likelihood ratio test, together with a maximum a posteriori source location estimator, is used to automatically detect suitable sources and initialize the calibration procedure. The performance of the proposed method is evaluated using data from two 56-element hydrophone arrays. Results from two sea trials indicate that: 1) signal sources suitable for the calibration can be automatically detected; 2) the shapes and orientations of the arrays can be consistently estimated from the different data sets with shape variations of a few decimeters and orientation variations of less than 2
$^{\circ }$
; and 3) the uncertainty bounds calculated by the calibration method are in agreement with the true calibration uncertainties. Furthermore, the bearing time record from a sea trial with an autonomous mobile underwater signal source also shows the efficacy of the proposed calibration method. In the studied scenario, the root-mean-square bearing tracking error was reduced from 4
$^{\circ }$
to 1
$^{\circ }$
when using the calibrated array shapes compared to assuming the arrays' to be straight lines. Also, the beamforming gain increased by approximately 1 dB.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.