K. A. Lapshova, N. E. Gordina, E. Yu. Kvitkova, T. V. Izvekova, V. I. Grinevich, G. I. Gusev, V. V. Rybkin, A. A. Gushchin
{"title":"Destruction of 2,4-Dichlorophenol Vapor in a Process Involving the Combined Action of DBD in Oxygen and a Catalyst","authors":"K. A. Lapshova, N. E. Gordina, E. Yu. Kvitkova, T. V. Izvekova, V. I. Grinevich, G. I. Gusev, V. V. Rybkin, A. A. Gushchin","doi":"10.1007/s11090-024-10462-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the process of decomposition of 2,4-dichlorophenol (2,4-DCP) vapor under the influence of atmospheric pressure DBD in oxygen was studied. The studies were carried out in two modes: with a catalyst (natural vermiculite doped with zirconium) and without it. A number of basic characteristics of the catalyst were assessed. The rates and effective rate constants of sorption processes, as well as decomposition processes in plasma and plasma-catalytic systems, were determined. Based on these data, the energy efficiency of the decomposition process was calculated. The data obtained suggested that the initial stage of decomposition is the reaction of interaction of electrons with pollutant molecules. The catalyst has been shown to speed up the decomposition process, increase energy efficiency and the conversion of 2,4-DCP to CO<sub>2</sub> molecules, and prevent the formation of condensed products on the reactor walls. The work estimates the carbon and chlorine balances before and after treatment, which reach a maximum of 99 and 60%, respectively. It was also shown that the catalyst retains its activity for at least 7 h of continuous operation.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10462-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the process of decomposition of 2,4-dichlorophenol (2,4-DCP) vapor under the influence of atmospheric pressure DBD in oxygen was studied. The studies were carried out in two modes: with a catalyst (natural vermiculite doped with zirconium) and without it. A number of basic characteristics of the catalyst were assessed. The rates and effective rate constants of sorption processes, as well as decomposition processes in plasma and plasma-catalytic systems, were determined. Based on these data, the energy efficiency of the decomposition process was calculated. The data obtained suggested that the initial stage of decomposition is the reaction of interaction of electrons with pollutant molecules. The catalyst has been shown to speed up the decomposition process, increase energy efficiency and the conversion of 2,4-DCP to CO2 molecules, and prevent the formation of condensed products on the reactor walls. The work estimates the carbon and chlorine balances before and after treatment, which reach a maximum of 99 and 60%, respectively. It was also shown that the catalyst retains its activity for at least 7 h of continuous operation.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.