Destruction of 2,4-Dichlorophenol Vapor in a Process Involving the Combined Action of DBD in Oxygen and a Catalyst

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
K. A. Lapshova, N. E. Gordina, E. Yu. Kvitkova, T. V. Izvekova, V. I. Grinevich, G. I. Gusev, V. V. Rybkin, A. A. Gushchin
{"title":"Destruction of 2,4-Dichlorophenol Vapor in a Process Involving the Combined Action of DBD in Oxygen and a Catalyst","authors":"K. A. Lapshova,&nbsp;N. E. Gordina,&nbsp;E. Yu. Kvitkova,&nbsp;T. V. Izvekova,&nbsp;V. I. Grinevich,&nbsp;G. I. Gusev,&nbsp;V. V. Rybkin,&nbsp;A. A. Gushchin","doi":"10.1007/s11090-024-10462-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the process of decomposition of 2,4-dichlorophenol (2,4-DCP) vapor under the influence of atmospheric pressure DBD in oxygen was studied. The studies were carried out in two modes: with a catalyst (natural vermiculite doped with zirconium) and without it. A number of basic characteristics of the catalyst were assessed. The rates and effective rate constants of sorption processes, as well as decomposition processes in plasma and plasma-catalytic systems, were determined. Based on these data, the energy efficiency of the decomposition process was calculated. The data obtained suggested that the initial stage of decomposition is the reaction of interaction of electrons with pollutant molecules. The catalyst has been shown to speed up the decomposition process, increase energy efficiency and the conversion of 2,4-DCP to CO<sub>2</sub> molecules, and prevent the formation of condensed products on the reactor walls. The work estimates the carbon and chlorine balances before and after treatment, which reach a maximum of 99 and 60%, respectively. It was also shown that the catalyst retains its activity for at least 7 h of continuous operation.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-024-10462-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the process of decomposition of 2,4-dichlorophenol (2,4-DCP) vapor under the influence of atmospheric pressure DBD in oxygen was studied. The studies were carried out in two modes: with a catalyst (natural vermiculite doped with zirconium) and without it. A number of basic characteristics of the catalyst were assessed. The rates and effective rate constants of sorption processes, as well as decomposition processes in plasma and plasma-catalytic systems, were determined. Based on these data, the energy efficiency of the decomposition process was calculated. The data obtained suggested that the initial stage of decomposition is the reaction of interaction of electrons with pollutant molecules. The catalyst has been shown to speed up the decomposition process, increase energy efficiency and the conversion of 2,4-DCP to CO2 molecules, and prevent the formation of condensed products on the reactor walls. The work estimates the carbon and chlorine balances before and after treatment, which reach a maximum of 99 and 60%, respectively. It was also shown that the catalyst retains its activity for at least 7 h of continuous operation.

Abstract Image

Abstract Image

在氧气和催化剂共同作用的过程中销毁 2,4-二氯苯酚蒸气
在这项工作中,研究了在氧气中的常压 DBD 作用下,2,4-二氯苯酚(2,4-DCP)蒸气的分解过程。研究以两种模式进行:使用催化剂(掺杂锆的天然蛭石)和不使用催化剂。对催化剂的一些基本特性进行了评估。确定了吸附过程的速率和有效速率常数,以及等离子体和等离子体催化系统中的分解过程。根据这些数据,计算了分解过程的能效。所得数据表明,分解的初始阶段是电子与污染物分子的相互作用反应。研究表明,催化剂可加快分解过程,提高能量效率,将 2,4-DCP 转化为二氧化碳分子,并防止在反应器壁上形成冷凝产物。这项研究对处理前后的碳和氯平衡进行了估算,结果表明,处理前后的碳和氯平衡最高分别达到 99% 和 60%。研究还表明,催化剂在连续运行至少 7 小时后仍能保持活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信