Wei Tan , Guixiang Yao , Hang Yu , Yanzhi He , Mingrong Lu , Tianru Zou , Xiaopei Li , Pengyuan Yin , Pei Na , Wenrong Yang , Min Yang , Hongbin Wang
{"title":"Ultra-trace Ag doped carbon quantum dots with peroxidase-like activity for the colorimetric detection of glucose","authors":"Wei Tan , Guixiang Yao , Hang Yu , Yanzhi He , Mingrong Lu , Tianru Zou , Xiaopei Li , Pengyuan Yin , Pei Na , Wenrong Yang , Min Yang , Hongbin Wang","doi":"10.1016/j.foodchem.2024.139020","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon quantum dots (CQDs) have significant applications in nanozymes. However, previous studies have not elucidated the structure–activity relationship and enzyme mechanism. In this study, we employed a one-step microwave method to synthesize ultra-trace Ag-doped carbon quantum dots (Ag-CQDs). In the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), we used the oxidative coupling reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) to evaluate the intrinsic peroxidase-like activity, kinetics, and mechanism of Ag-CQDs. The trace amount of doped Ag (1.64 %) facilitated electron transfer from the CQDs interior to the surface. The electron transfer triggered the peroxide activity of CQDs, producing hydroxyl radical (·OH), which oxidized the colorless TMB to blue-colored TMB (oxTMB). By coupling with glucose oxidase (GOx), the Ag-CQDs/H<sub>2</sub>O<sub>2</sub>/TMB system has been used for colorimetric glucose determination. The system demonstrated a low detection limit (0.17 µM), wide linear range (0.5–5.5 µM), and satisfactory results when fruit juice was analyzed. This study reports a feasible method for the colorimetric detection of glucose by synthesizing ultra-trace Ag-doped carbon quantum dots with peroxidase‐mimicking activity.</p></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"447 ","pages":"Article 139020"},"PeriodicalIF":8.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814624006691","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon quantum dots (CQDs) have significant applications in nanozymes. However, previous studies have not elucidated the structure–activity relationship and enzyme mechanism. In this study, we employed a one-step microwave method to synthesize ultra-trace Ag-doped carbon quantum dots (Ag-CQDs). In the presence of hydrogen peroxide (H2O2), we used the oxidative coupling reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) to evaluate the intrinsic peroxidase-like activity, kinetics, and mechanism of Ag-CQDs. The trace amount of doped Ag (1.64 %) facilitated electron transfer from the CQDs interior to the surface. The electron transfer triggered the peroxide activity of CQDs, producing hydroxyl radical (·OH), which oxidized the colorless TMB to blue-colored TMB (oxTMB). By coupling with glucose oxidase (GOx), the Ag-CQDs/H2O2/TMB system has been used for colorimetric glucose determination. The system demonstrated a low detection limit (0.17 µM), wide linear range (0.5–5.5 µM), and satisfactory results when fruit juice was analyzed. This study reports a feasible method for the colorimetric detection of glucose by synthesizing ultra-trace Ag-doped carbon quantum dots with peroxidase‐mimicking activity.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.