Mice with a Pax2 missense variant display impaired glomerular repair.

Joanna Cunanan, Sarada Sriya Rajyam, Bedra Sharif, Khalil Udwan, Akanchaya Rana, Vanessa De Gregorio, Samantha Ricardo, Andrew Elia, Brian Brooks, Astrid Weins, Martin Pollak, Rohan John, Moumita Barua
{"title":"Mice with a <i>Pax2</i> missense variant display impaired glomerular repair.","authors":"Joanna Cunanan, Sarada Sriya Rajyam, Bedra Sharif, Khalil Udwan, Akanchaya Rana, Vanessa De Gregorio, Samantha Ricardo, Andrew Elia, Brian Brooks, Astrid Weins, Martin Pollak, Rohan John, Moumita Barua","doi":"10.1152/ajprenal.00259.2023","DOIUrl":null,"url":null,"abstract":"<p><p>PAX2 regulates kidney development, and its expression persists in parietal epithelial cells (PECs), potentially serving as a podocyte reserve. We hypothesized that mice with a <i>Pax2</i> pathogenic missense variant (<i>Pax2</i><sup>A220G/+</sup>) have impaired PEC-mediated podocyte regeneration. Embryonic wild-type mouse kidneys showed overlapping expression of PAX2/Wilms' tumor-1 (WT-1) until PEC and podocyte differentiation, reflecting a close lineage relationship. Embryonic and adult <i>Pax2</i><sup>A220G/+</sup> mice have reduced nephron number but demonstrated no glomerular disease under baseline conditions. <i>Pax2</i><sup>A220G/+</sup> mice compared with wild-type mice were more susceptible to glomerular disease after adriamycin (ADR)-induced podocyte injury, as demonstrated by worsened glomerular scarring, increased podocyte foot process effacement, and podocyte loss. There was a decrease in PAX2-expressing PECs in wild-type mice after adriamycin injury accompanied by the occurrence of PAX2/WT-1-coexpressing glomerular tuft cells. In contrast, <i>Pax2</i><sup>A220G/+</sup> mice showed no changes in the numbers of PAX2-expressing PECs after adriamycin injury, associated with fewer PAX2/WT-1-coexpressing glomerular tuft cells compared with injured wild-type mice. A subset of PAX2-expressing glomerular tuft cells after adriamycin injury was increased in <i>Pax2</i><sup>A220G/+</sup> mice, suggesting a pathological process given the worse outcomes observed in this group. Finally, <i>Pax2</i><sup>A220G/+</sup> mice have increased numbers of glomerular tuft cells expressing Ki-67 and cleaved caspase-3 compared with wild-type mice after adriamycin injury, consistent with maladaptive responses to podocyte loss. Collectively, our results suggest that decreased glomerular numbers in <i>Pax2</i><sup>A220G/+</sup> mice are likely compounded with the inability of their mutated PECs to regenerate podocyte loss, and together these two mechanisms drive the worsened focal segmental glomerular sclerosis phenotype in these mice.<b>NEW & NOTEWORTHY</b> Congenital anomalies of the kidney and urinary tract comprise some of the leading causes of kidney failure in children, but our previous study showed that one of its genetic causes, <i>PAX2</i>, is also associated with adult-onset focal segmental glomerular sclerosis. Using a clinically relevant model, our present study demonstrated that after podocyte injury, parietal epithelial cells expressing PAX2 are deployed into the glomerular tuft to assist in repair in wild-type mice, but this mechanism is impaired in <i>Pax2</i><sup>A220G/+</sup> mice.</p>","PeriodicalId":93867,"journal":{"name":"American journal of physiology. Renal physiology","volume":" ","pages":"F704-F726"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Renal physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/ajprenal.00259.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PAX2 regulates kidney development, and its expression persists in parietal epithelial cells (PECs), potentially serving as a podocyte reserve. We hypothesized that mice with a Pax2 pathogenic missense variant (Pax2A220G/+) have impaired PEC-mediated podocyte regeneration. Embryonic wild-type mouse kidneys showed overlapping expression of PAX2/Wilms' tumor-1 (WT-1) until PEC and podocyte differentiation, reflecting a close lineage relationship. Embryonic and adult Pax2A220G/+ mice have reduced nephron number but demonstrated no glomerular disease under baseline conditions. Pax2A220G/+ mice compared with wild-type mice were more susceptible to glomerular disease after adriamycin (ADR)-induced podocyte injury, as demonstrated by worsened glomerular scarring, increased podocyte foot process effacement, and podocyte loss. There was a decrease in PAX2-expressing PECs in wild-type mice after adriamycin injury accompanied by the occurrence of PAX2/WT-1-coexpressing glomerular tuft cells. In contrast, Pax2A220G/+ mice showed no changes in the numbers of PAX2-expressing PECs after adriamycin injury, associated with fewer PAX2/WT-1-coexpressing glomerular tuft cells compared with injured wild-type mice. A subset of PAX2-expressing glomerular tuft cells after adriamycin injury was increased in Pax2A220G/+ mice, suggesting a pathological process given the worse outcomes observed in this group. Finally, Pax2A220G/+ mice have increased numbers of glomerular tuft cells expressing Ki-67 and cleaved caspase-3 compared with wild-type mice after adriamycin injury, consistent with maladaptive responses to podocyte loss. Collectively, our results suggest that decreased glomerular numbers in Pax2A220G/+ mice are likely compounded with the inability of their mutated PECs to regenerate podocyte loss, and together these two mechanisms drive the worsened focal segmental glomerular sclerosis phenotype in these mice.NEW & NOTEWORTHY Congenital anomalies of the kidney and urinary tract comprise some of the leading causes of kidney failure in children, but our previous study showed that one of its genetic causes, PAX2, is also associated with adult-onset focal segmental glomerular sclerosis. Using a clinically relevant model, our present study demonstrated that after podocyte injury, parietal epithelial cells expressing PAX2 are deployed into the glomerular tuft to assist in repair in wild-type mice, but this mechanism is impaired in Pax2A220G/+ mice.

Pax2错义变体小鼠的肾小球修复功能受损。
PAX2 可调控肾脏的发育,它在顶叶上皮细胞(PECs)中的持续表达有可能成为荚膜细胞的储备。我们推测,具有 Pax2 致病性错义变体(Pax2A220G/+)的小鼠会损害 PEC 介导的荚膜细胞再生。野生型小鼠的胚胎肾脏在 PEC 和荚膜细胞分化之前显示出 PAX2/WT-1 的重叠表达,这反映了一种密切的系谱关系。胚胎和成年 Pax2A220G/+ 小鼠的肾小球数量减少,但在基线条件下没有表现出肾小球疾病。与野生型小鼠相比,Pax2A220G/+小鼠在阿霉素诱导的荚膜细胞损伤后更易患肾小球疾病,表现为肾小球瘢痕恶化、荚膜细胞足突脱落和荚膜细胞丢失增加。阿霉素损伤后,野生型小鼠中表达 PAX2 的 PECs 减少,同时出现了 PAX2/WT-1 共同表达的肾小球丛细胞。相比之下,Pax2A220G/+小鼠在阿霉素损伤后,表达PAX2的PECs数量没有变化,与受伤的野生型小鼠相比,表达PAX2/WT-1的肾小球丛细胞更少。Pax2A220G/+小鼠在阿霉素损伤后表达PAX2的肾小球丛细胞亚群增多,鉴于该组小鼠的预后较差,这表明存在病理过程。最后,与野生型相比,Pax2A220G/+小鼠在阿霉素损伤后表达Ki67和CC3的肾小球丛细胞数量增加,这与荚膜细胞丧失后的适应不良反应一致。总之,我们的研究结果表明,Pax2A220G/+ 小鼠肾小球数量的减少可能与其突变的 PEC 无法再生荚膜损失的荚膜细胞有关,这两种机制共同导致了这些小鼠 FSGS 表型的恶化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信