Regulatory role of interfacial adhesion and mechanical microenvironments in microbe-host interactions

Yuting Feng, Jianyong Huang
{"title":"Regulatory role of interfacial adhesion and mechanical microenvironments in microbe-host interactions","authors":"Yuting Feng,&nbsp;Jianyong Huang","doi":"10.1016/j.mbm.2024.100060","DOIUrl":null,"url":null,"abstract":"<div><p>A recent study published in <em>Nature Communications</em> showed that essential modulatory roles of interfacial adhesion and mechanical microenvironments such as geometric constraints and extracellular matrix stiffness, in microbe-host cell interactions. This study utilized single-cell force spectroscopy and RNA sequencing to gain insight into the intrinsic mechanisms by which the mechanical microenvironment regulates bacterial-host interactions and therefore reveal potential interventions against bacterial invasion. Meanwhile, the adhesion forces involved in the bacterial–host interactions were recognized as a new indicator for assessing the extent of bacterial infection. Taken together, these findings demonstrate that interfacial adhesion forces and mechanical microenvironments play a dominant role in modulating functions and behaviors of microorganisms and host cells, which also provide a mechanobiology-inspired idea for the development of subsequent drug-resistant antimicrobials and broad-spectrum antiviral drugs.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000238/pdfft?md5=5a9dc4292dc1bffe61407088d51445eb&pid=1-s2.0-S2949907024000238-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent study published in Nature Communications showed that essential modulatory roles of interfacial adhesion and mechanical microenvironments such as geometric constraints and extracellular matrix stiffness, in microbe-host cell interactions. This study utilized single-cell force spectroscopy and RNA sequencing to gain insight into the intrinsic mechanisms by which the mechanical microenvironment regulates bacterial-host interactions and therefore reveal potential interventions against bacterial invasion. Meanwhile, the adhesion forces involved in the bacterial–host interactions were recognized as a new indicator for assessing the extent of bacterial infection. Taken together, these findings demonstrate that interfacial adhesion forces and mechanical microenvironments play a dominant role in modulating functions and behaviors of microorganisms and host cells, which also provide a mechanobiology-inspired idea for the development of subsequent drug-resistant antimicrobials and broad-spectrum antiviral drugs.

界面粘附和机械微环境在微生物-宿主相互作用中的调节作用
最近发表在《自然-通讯》(Nature Communications)上的一项研究表明,界面粘附和机械微环境(如几何约束和细胞外基质硬度)在微生物-宿主细胞相互作用中起着重要的调节作用。这项研究利用单细胞力谱仪和 RNA 测序深入了解了机械微环境调控细菌-宿主相互作用的内在机制,从而揭示了防止细菌入侵的潜在干预措施。同时,参与细菌-宿主相互作用的粘附力被认为是评估细菌感染程度的新指标。综上所述,这些研究结果表明,界面粘附力和机械微环境在调节微生物和宿主细胞的功能和行为方面发挥着主导作用,这也为后续耐药性抗菌药物和广谱抗病毒药物的开发提供了机械生物学启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信