Predicting the error magnitude in patient-specific QA during radiotherapy based on ResNet.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Ying Huang, Yifei Pi, Kui Ma, Xiaojuan Miao, Sichao Fu, Aihui Feng, Yanhua Duan, Qing Kong, Weihai Zhuo, Zhiyong Xu
{"title":"Predicting the error magnitude in patient-specific QA during radiotherapy based on ResNet.","authors":"Ying Huang, Yifei Pi, Kui Ma, Xiaojuan Miao, Sichao Fu, Aihui Feng, Yanhua Duan, Qing Kong, Weihai Zhuo, Zhiyong Xu","doi":"10.3233/XST-230251","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude.</p><p><strong>Objective: </strong>The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet.</p><p><strong>Methods: </strong>A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude.</p><p><strong>Results: </strong>In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45-1.54, 0.58-0.90, 0.32-0.36, and 0.15-0.24; the mean absolute error (MAE) was 1.06-1.18, 0.32-0.78, 0.25-0.27, and 0.11-0.18, respectively, for COLL, MU, MLCR and MLCS.</p><p><strong>Conclusions: </strong>In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"797-807"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230251","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The error magnitude is closely related to patient-specific dosimetry and plays an important role in evaluating the delivery of the radiotherapy plan in QA. No previous study has investigated the feasibility of deep learning to predict error magnitude.

Objective: The purpose of this study was to predict the error magnitude of different delivery error types in radiotherapy based on ResNet.

Methods: A total of 34 chest cancer plans (172 fields) of intensity-modulated radiation therapy (IMRT) from Eclipse were selected, of which 30 plans (151 fields) were used for model training and validation, and 4 plans including 21 fields were used for external testing. The collimator misalignment (COLL), monitor unit variation (MU), random multi-leaf collimator shift (MLCR), and systematic MLC shift (MLCS) were introduced. These dose distributions of portal dose predictions for the original plans were defined as the reference dose distribution (RDD), while those for the error-introduced plans were defined as the error-introduced dose distribution (EDD). Different inputs were used in the ResNet for predicting the error magnitude.

Results: In the test set, the accuracy of error type prediction based on the dose difference, gamma distribution, and RDD + EDD was 98.36%, 98.91%, and 100%, respectively; the root mean squared error (RMSE) was 1.45-1.54, 0.58-0.90, 0.32-0.36, and 0.15-0.24; the mean absolute error (MAE) was 1.06-1.18, 0.32-0.78, 0.25-0.27, and 0.11-0.18, respectively, for COLL, MU, MLCR and MLCS.

Conclusions: In this study, error magnitude prediction models with dose difference, gamma distribution, and RDD + EDD are established based on ResNet. The accurate prediction of the error magnitude under different error types can provide reference for error analysis in patient-specific QA.

基于 ResNet 预测放疗过程中患者特异性 QA 的误差幅度。
背景:误差大小与特定患者的剂量测定密切相关,在质量保证中对放疗计划的实施起着重要的评估作用。以前没有研究调查过深度学习预测误差幅度的可行性:本研究的目的是基于 ResNet 预测放疗中不同递送误差类型的误差幅度:共选取了 34 份来自 Eclipse 的胸部肿瘤调强放射治疗(IMRT)计划(172 个场),其中 30 份计划(151 个场)用于模型训练和验证,4 份计划(包括 21 个场)用于外部测试。引入了准直器错位(COLL)、监测器单元变化(MU)、随机多叶准直器偏移(MLCR)和系统性多叶准直器偏移(MLCS)。原始计划的门户剂量预测的剂量分布被定义为参考剂量分布(RDD),而误差引入计划的剂量分布被定义为误差引入剂量分布(EDD)。ResNet 使用不同的输入来预测误差大小:在测试集中,基于剂量差、伽马分布和 RDD + EDD 的误差类型预测准确率分别为 98.36%、98.91% 和 100%;均方根误差(RMSE)分别为 1.45-1.54、0.58-0.90、0.32-0.36 和 0.15-0.24;COLL、MU、MLCR 和 MLCS 的平均绝对误差(MAE)分别为 1.06-1.18、0.32-0.78、0.25-0.27 和 0.11-0.18:本研究基于 ResNet 建立了剂量差、伽马分布和 RDD + EDD 的误差幅度预测模型。不同误差类型下误差大小的准确预测可为患者质量评估中的误差分析提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信