{"title":"Discrete, Continuous and Asymptotic for a Modified Singularly Gaussian Unitary Ensemble and the Smallest Eigenvalue of Its Large Hankel Matrices","authors":"Dan Wang, Mengkun Zhu","doi":"10.1007/s11040-024-09477-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on the characteristics of the Hankel determinant generated by a modified singularly Gaussian weight. The weight function is defined as: </p><div><div><span>$$\\begin{aligned} w(z;t)=|z|^{\\alpha }\\textrm{e}^{-\\frac{1}{z^2}-t\\left( z^2-\\frac{1}{z^2}\\right) }, ~z\\in {\\mathbb {R}}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\alpha >1\\)</span> and <span>\\(t\\in (0,1)\\)</span> are parameters. Using ladder operator techniques, we derive a series of difference formulas for the auxiliary quantities and recurrence coefficients. We present the difference equations for the recurrence coefficients and the logarithmic derivative of the Hankel determinant. We then use the “t-dependence\" to obtain the differential identities satisfied by the auxiliary quantities and the logarithmic derivative of the Hankel determinant. To obtain the large <i>n</i> asymptotic expressions of the recurrence coefficients, we use the Coulomb fluid method together with the related difference equations, which depend on <i>n</i> either being odd or even. We also obtain the reduction forms of the second-order differential equations satisfied by the orthogonal polynomials generated by this weight. Two special cases coincide with the bi-confluent Heun equation and the double confluent Heun equation, respectively. Finally, we calculate the asymptotic behavior of the smallest eigenvalue of large Hankel matrices generated by this weight. Our result not only covers the classical result of Szegö (Trans Am Math Soc 40:450–461, 1936) but also determines our next research direction.</p></div>","PeriodicalId":694,"journal":{"name":"Mathematical Physics, Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Physics, Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s11040-024-09477-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on the characteristics of the Hankel determinant generated by a modified singularly Gaussian weight. The weight function is defined as:
where \(\alpha >1\) and \(t\in (0,1)\) are parameters. Using ladder operator techniques, we derive a series of difference formulas for the auxiliary quantities and recurrence coefficients. We present the difference equations for the recurrence coefficients and the logarithmic derivative of the Hankel determinant. We then use the “t-dependence" to obtain the differential identities satisfied by the auxiliary quantities and the logarithmic derivative of the Hankel determinant. To obtain the large n asymptotic expressions of the recurrence coefficients, we use the Coulomb fluid method together with the related difference equations, which depend on n either being odd or even. We also obtain the reduction forms of the second-order differential equations satisfied by the orthogonal polynomials generated by this weight. Two special cases coincide with the bi-confluent Heun equation and the double confluent Heun equation, respectively. Finally, we calculate the asymptotic behavior of the smallest eigenvalue of large Hankel matrices generated by this weight. Our result not only covers the classical result of Szegö (Trans Am Math Soc 40:450–461, 1936) but also determines our next research direction.
期刊介绍:
MPAG is a peer-reviewed journal organized in sections. Each section is editorially independent and provides a high forum for research articles in the respective areas.
The entire editorial board commits itself to combine the requirements of an accurate and fast refereeing process.
The section on Probability and Statistical Physics focuses on probabilistic models and spatial stochastic processes arising in statistical physics. Examples include: interacting particle systems, non-equilibrium statistical mechanics, integrable probability, random graphs and percolation, critical phenomena and conformal theories. Applications of probability theory and statistical physics to other areas of mathematics, such as analysis (stochastic pde''s), random geometry, combinatorial aspects are also addressed.
The section on Quantum Theory publishes research papers on developments in geometry, probability and analysis that are relevant to quantum theory. Topics that are covered in this section include: classical and algebraic quantum field theories, deformation and geometric quantisation, index theory, Lie algebras and Hopf algebras, non-commutative geometry, spectral theory for quantum systems, disordered quantum systems (Anderson localization, quantum diffusion), many-body quantum physics with applications to condensed matter theory, partial differential equations emerging from quantum theory, quantum lattice systems, topological phases of matter, equilibrium and non-equilibrium quantum statistical mechanics, multiscale analysis, rigorous renormalisation group.