Exploring mc-Silicon Wafers: Utilizing Machine Learning to Enhance Wafer Quality Through Etching Studies

IF 1.5 4区 材料科学 Q3 Chemistry
Madhesh Raji, Sreeja Balakrishnapillai Suseela, Srinivasan Manikkam, Gowthami Anbazhagan, Kentaro Kutsukake, Keerthivasan Thamotharan, Ramadoss Rajavel, Noritaka Usami, Ramasamy Perumalsamy
{"title":"Exploring mc-Silicon Wafers: Utilizing Machine Learning to Enhance Wafer Quality Through Etching Studies","authors":"Madhesh Raji,&nbsp;Sreeja Balakrishnapillai Suseela,&nbsp;Srinivasan Manikkam,&nbsp;Gowthami Anbazhagan,&nbsp;Kentaro Kutsukake,&nbsp;Keerthivasan Thamotharan,&nbsp;Ramadoss Rajavel,&nbsp;Noritaka Usami,&nbsp;Ramasamy Perumalsamy","doi":"10.1002/crat.202300279","DOIUrl":null,"url":null,"abstract":"<p>This paper provides a method for improving the photovoltaic conversion efficiency and optical attributes of silicon solar cells manufactured from as-cut boron doped p-type multi-crystalline silicon wafers using acid-based chemical texturization via machine learning. A decreased reflectance, which can be attained by the right chemical etching conditions, is one of the key elements for raising solar cell efficiency. In this work, the mc-Silicon wafer surface reflectance is obtained under (&lt;2%) after optimization of wet chemical etching. The HF + HNO<sub>3</sub> + CH<sub>3</sub>COOH chemical etchant is used in the ratio 1:3:2 at different conditions of the etching duration of 1 min, 2 min, 3 min, and 4 min, respectively. The as-cut boron doped p-type mc-silicon wafers are analysed with ultraviolet–visible spectroscopy, optical microscopy, Fourier transforms infrared spectroscopy, thickness profilometer, and scanning electron microscopy before and after etching. The chemical etching solution produces good results in 3 min etched wafer, with a reflectivity value of &lt;2%.The reflectivity and optical images are inputs to the convolutional neural network model and the linear regression model to obtain the etching rate for better reflectivity. The classification model provides 99.6% accuracy and the regression model results in the minimum mean squared error (MSE) of 0.062.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202300279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a method for improving the photovoltaic conversion efficiency and optical attributes of silicon solar cells manufactured from as-cut boron doped p-type multi-crystalline silicon wafers using acid-based chemical texturization via machine learning. A decreased reflectance, which can be attained by the right chemical etching conditions, is one of the key elements for raising solar cell efficiency. In this work, the mc-Silicon wafer surface reflectance is obtained under (<2%) after optimization of wet chemical etching. The HF + HNO3 + CH3COOH chemical etchant is used in the ratio 1:3:2 at different conditions of the etching duration of 1 min, 2 min, 3 min, and 4 min, respectively. The as-cut boron doped p-type mc-silicon wafers are analysed with ultraviolet–visible spectroscopy, optical microscopy, Fourier transforms infrared spectroscopy, thickness profilometer, and scanning electron microscopy before and after etching. The chemical etching solution produces good results in 3 min etched wafer, with a reflectivity value of <2%.The reflectivity and optical images are inputs to the convolutional neural network model and the linear regression model to obtain the etching rate for better reflectivity. The classification model provides 99.6% accuracy and the regression model results in the minimum mean squared error (MSE) of 0.062.

Abstract Image

探索微晶硅晶片:利用机器学习通过蚀刻研究提高硅片质量
本文提供了一种方法,通过机器学习,利用酸性化学纹理化技术,改善用掺硼对型多晶硅片制造的硅太阳能电池的光电转换效率和光学特性。通过合适的化学蚀刻条件降低反射率是提高太阳能电池效率的关键因素之一。在这项工作中,通过优化湿化学蚀刻,mc-Silicon 硅片表面的反射率达到了 (<2%)。HF + HNO3 + CH3COOH 化学蚀刻剂的比例为 1:3:2,蚀刻时间分别为 1 分钟、2 分钟、3 分钟和 4 分钟。在蚀刻前后,使用紫外可见光谱、光学显微镜、傅立叶变换红外光谱、厚度轮廓仪和扫描电子显微镜对切割后的掺硼 p 型微晶硅片进行了分析。将反射率和光学图像输入卷积神经网络模型和线性回归模型,可得出蚀刻率,从而获得更好的反射率。分类模型的准确率为 99.6%,回归模型的最小均方误差 (MSE) 为 0.062。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信