{"title":"A relationship of tightening torque and initial load of dental implant of nano bio-silica and bamboo fiber-reinforced bio-composite material.","authors":"Sambhrant Srivastava, Saroj Kumar Sarangi","doi":"10.1080/10255842.2024.2320750","DOIUrl":null,"url":null,"abstract":"<p><p>Due to entry of body fluid like saliva, blood, etc. in the dental implant assembly lowers the preload value, thus dental implant abutment tightening torque loses. In this article a novel chitosan-reinforced bamboo and nano bio-silica-reinforced five composite materials (CP, CF, C1, C2, and C3) are fabricated using the hand layup method, and their mechanical, biocompatible, and moisture absorption properties are observed and discussed. The present study examines the impact of friction and Young's modulus on the correlation between torque and starting load in dental implant abutment screws, utilizing the attributes of a bio-composite material. C2 bio-composite composite material exhibits the highest tensile strength (139.442 MPa), flexural strength (183.571 MPa), compressive strength (62.78 MPa), and a minimum value of 1.35% absorption of water. C3 is tested with no cytotoxicity, while C3 and CF exhibit weak biofilm resistance against S. aureus gram-positive bacteria. The C2 bio-composite material demonstrated a maximum initial load of 20 N with a tightening torque of 20 N-cm, under both 0.12 and 0.16 coefficients of friction. The simulated results were compared with several theoretical relations of torque and initial load and found that the Motos equation holds the nearest result to the obtained preload value from finite element analysis. Overall, the experimental findings suggest that the C2 bio-composite material holds significant potential as a prominent material for dental implants or fixtures.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1280-1294"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2320750","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to entry of body fluid like saliva, blood, etc. in the dental implant assembly lowers the preload value, thus dental implant abutment tightening torque loses. In this article a novel chitosan-reinforced bamboo and nano bio-silica-reinforced five composite materials (CP, CF, C1, C2, and C3) are fabricated using the hand layup method, and their mechanical, biocompatible, and moisture absorption properties are observed and discussed. The present study examines the impact of friction and Young's modulus on the correlation between torque and starting load in dental implant abutment screws, utilizing the attributes of a bio-composite material. C2 bio-composite composite material exhibits the highest tensile strength (139.442 MPa), flexural strength (183.571 MPa), compressive strength (62.78 MPa), and a minimum value of 1.35% absorption of water. C3 is tested with no cytotoxicity, while C3 and CF exhibit weak biofilm resistance against S. aureus gram-positive bacteria. The C2 bio-composite material demonstrated a maximum initial load of 20 N with a tightening torque of 20 N-cm, under both 0.12 and 0.16 coefficients of friction. The simulated results were compared with several theoretical relations of torque and initial load and found that the Motos equation holds the nearest result to the obtained preload value from finite element analysis. Overall, the experimental findings suggest that the C2 bio-composite material holds significant potential as a prominent material for dental implants or fixtures.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.