Judith Weda, Angelika Mader, Hamid Souri, Edwin Dertien, Jan van Erp
{"title":"Perception Threshold for Pressure by a Soft Textile Actuator.","authors":"Judith Weda, Angelika Mader, Hamid Souri, Edwin Dertien, Jan van Erp","doi":"10.1109/TOH.2024.3370835","DOIUrl":null,"url":null,"abstract":"<p><p>Electroactive textile (EAT) has the potential to apply pressure stimuli to the skin, e.g. in the form of a squeeze on the arm. To present a perceivable haptic sensation we need to know the perception threshold for such stimuli. We designed a set-up based on motorized ribbons around the arm with five different widths (range 3 - 49 mm) for psychophysical studies. We investigated the perception threshold of force pressure and ribbon reduction in two studies, using two methods (PSI and 1up/3down staircase), comparing sex, the left and right arm, the lower and upper arm, and stimulated surface area with a total of 57 participants. We found that larger stimulation surfaces require less pressure to reach the perception threshold (0.151 N per cm <sup>2</sup> for 3 mm width, 0.00972 N per cm <sup>2</sup> for 49 mm width on the lower arm). This indicates a spatial summation effect for these pressure stimuli. We did not find significant differences in perception threshold for the left and right arm and, the upper and lower arm. Between male and female participants we found significant differences for two conditions (10 mm and 25 mm) in Experiment 1, but we could not reproduce this in Experiment 2.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3370835","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Electroactive textile (EAT) has the potential to apply pressure stimuli to the skin, e.g. in the form of a squeeze on the arm. To present a perceivable haptic sensation we need to know the perception threshold for such stimuli. We designed a set-up based on motorized ribbons around the arm with five different widths (range 3 - 49 mm) for psychophysical studies. We investigated the perception threshold of force pressure and ribbon reduction in two studies, using two methods (PSI and 1up/3down staircase), comparing sex, the left and right arm, the lower and upper arm, and stimulated surface area with a total of 57 participants. We found that larger stimulation surfaces require less pressure to reach the perception threshold (0.151 N per cm 2 for 3 mm width, 0.00972 N per cm 2 for 49 mm width on the lower arm). This indicates a spatial summation effect for these pressure stimuli. We did not find significant differences in perception threshold for the left and right arm and, the upper and lower arm. Between male and female participants we found significant differences for two conditions (10 mm and 25 mm) in Experiment 1, but we could not reproduce this in Experiment 2.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.