{"title":"A Lightweight Chip-Scale Chemical Mechanical Polishing Model Based on Polynomial Network","authors":"Ruian Ji;Rong Chen;Lan Chen","doi":"10.1109/TSM.2024.3370175","DOIUrl":null,"url":null,"abstract":"Chemical mechanical polishing/planarization (CMP) combines physical grinding and chemical reactions to planarize the wafer surface. The complex mechanism of CMP brings great challenges to the mechanism-based modeling process. The data-driven CMP modeling process is limited by insufficient datasets. At the same time, these two types of models generally have high computational complexity. In this paper, we introduce the group method of data handling (GMDH)-type polynomial network to build the CMP model to address the above challenges. We designed and manufactured the test chip using a 28nm process. The measurement data from the test chip shows that compared with the mechanism-based CMP model, the trained CMP model based on GMDH-type polynomial network has higher accuracy and lower computational complexity, with the average simulation speed being 115x faster. Experiments based on silicon data show that this modeling method has a small demand for data, and 20 randomly selected sets of data can meet the needs for modeling the current CMP process.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 2","pages":"139-145"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10445485/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical mechanical polishing/planarization (CMP) combines physical grinding and chemical reactions to planarize the wafer surface. The complex mechanism of CMP brings great challenges to the mechanism-based modeling process. The data-driven CMP modeling process is limited by insufficient datasets. At the same time, these two types of models generally have high computational complexity. In this paper, we introduce the group method of data handling (GMDH)-type polynomial network to build the CMP model to address the above challenges. We designed and manufactured the test chip using a 28nm process. The measurement data from the test chip shows that compared with the mechanism-based CMP model, the trained CMP model based on GMDH-type polynomial network has higher accuracy and lower computational complexity, with the average simulation speed being 115x faster. Experiments based on silicon data show that this modeling method has a small demand for data, and 20 randomly selected sets of data can meet the needs for modeling the current CMP process.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.