{"title":"Unsupervised Learning in a Ternary SNN Using STDP","authors":"Abhinav Gupta;Sneh Saurabh","doi":"10.1109/JEDS.2024.3366199","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel implementation of a ternary Spiking Neural Network (SNN) and investigates it using a hierarchical simulation framework. The proposed ternary SNN is trained in an unsupervised manner using the Spike Timing Dependent Plasticity (STDP) learning rule. A ternary neuron is implemented using a Dual-Pocket Tunnel Field effect transistor (DP-TFET). The synapse consists of a Magnetic Tunnel Junction (MTJ) with a Heavy Metal (HM) underlayer, allowing for the adjustment of its conductance by directing a current through the HM layer. Further, we show that a pair of dual-pocket Fully-Depleted Silicon-on-Insulator (FD-SOI) MOSFETs can be utilized to generate a current, which reduces exponentially with increasing duration of firing events between pre- and post-synaptic neurons. This current modulates the synapse’s conductance according to STDP. Furthermore, it is demonstrated that the proposed ternary SNN can be trained to classify digits in the MNIST dataset with an accuracy of 82%, which is better (75%) than that obtained using a binary SNN. Moreover, the runtime required to train the proposed ternary SNN is \n<inline-formula> <tex-math>$8\\times $ </tex-math></inline-formula>\n less than that required for a binary SNN.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10437991","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10437991/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel implementation of a ternary Spiking Neural Network (SNN) and investigates it using a hierarchical simulation framework. The proposed ternary SNN is trained in an unsupervised manner using the Spike Timing Dependent Plasticity (STDP) learning rule. A ternary neuron is implemented using a Dual-Pocket Tunnel Field effect transistor (DP-TFET). The synapse consists of a Magnetic Tunnel Junction (MTJ) with a Heavy Metal (HM) underlayer, allowing for the adjustment of its conductance by directing a current through the HM layer. Further, we show that a pair of dual-pocket Fully-Depleted Silicon-on-Insulator (FD-SOI) MOSFETs can be utilized to generate a current, which reduces exponentially with increasing duration of firing events between pre- and post-synaptic neurons. This current modulates the synapse’s conductance according to STDP. Furthermore, it is demonstrated that the proposed ternary SNN can be trained to classify digits in the MNIST dataset with an accuracy of 82%, which is better (75%) than that obtained using a binary SNN. Moreover, the runtime required to train the proposed ternary SNN is
$8\times $
less than that required for a binary SNN.
期刊介绍:
The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.