Experimental Evaluation of Tailored Double Heterojunction Non-Toxic Metal Oxide-Based Nanostructured Sensor for Multi-Sensing Application

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Binowesley R;Kirubaveni Savarimuthu;Kiruthika Ramany;Govindaraj Rajamanickam
{"title":"Experimental Evaluation of Tailored Double Heterojunction Non-Toxic Metal Oxide-Based Nanostructured Sensor for Multi-Sensing Application","authors":"Binowesley R;Kirubaveni Savarimuthu;Kiruthika Ramany;Govindaraj Rajamanickam","doi":"10.1109/TNANO.2024.3359697","DOIUrl":null,"url":null,"abstract":"A systematized experimental interpretation of BaTiO\n<sub>3</sub>\n (B), ZnO (Z), and BaTiO\n<sub>3</sub>\n/ZnO (B/Z) based sensors, fabricated via a facile solution-based method is reported. The structural properties analysis of all the sensors fabricated reveals the formation of characteristic respective dominant peaks (hexagonal, tetragonal, and heterostructure (hexagonal and tetragonal) for B, Z, and B/Z respectively). The decrease of band gap (2.97 eV-B/Z) due to double heterojunction formation is evident from tauc plot analysis. The fabricated multi-sensing sensors were subjected to both gas (CO (carbon monoxide) & (CH\n<sub>4</sub>\n) methane) and acceleration sensing systems individually to explore sensing properties. Comparably, the B/Z sensor showed improved gas sensing properties in terms of better response time (s), recovery time (s), and sensor response (%) at lower concentrations (10 ppm) for CO gas ∼1.12, ∼2.2 and ∼61.54 and CH\n<sub>4</sub>\n gas ∼4.12, ∼58.69, ∼14 respectively at room temperature. Likewise, the B/Z sensor exhibited a maximum output voltage of 2.31 V at a 13 Hz resonant frequency and a sensitivity of 1.9316 Vg\n<sup>−1</sup>\n compared to the other fabricated sensors.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"164-169"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10416377/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A systematized experimental interpretation of BaTiO 3 (B), ZnO (Z), and BaTiO 3 /ZnO (B/Z) based sensors, fabricated via a facile solution-based method is reported. The structural properties analysis of all the sensors fabricated reveals the formation of characteristic respective dominant peaks (hexagonal, tetragonal, and heterostructure (hexagonal and tetragonal) for B, Z, and B/Z respectively). The decrease of band gap (2.97 eV-B/Z) due to double heterojunction formation is evident from tauc plot analysis. The fabricated multi-sensing sensors were subjected to both gas (CO (carbon monoxide) & (CH 4 ) methane) and acceleration sensing systems individually to explore sensing properties. Comparably, the B/Z sensor showed improved gas sensing properties in terms of better response time (s), recovery time (s), and sensor response (%) at lower concentrations (10 ppm) for CO gas ∼1.12, ∼2.2 and ∼61.54 and CH 4 gas ∼4.12, ∼58.69, ∼14 respectively at room temperature. Likewise, the B/Z sensor exhibited a maximum output voltage of 2.31 V at a 13 Hz resonant frequency and a sensitivity of 1.9316 Vg −1 compared to the other fabricated sensors.
用于多重传感应用的定制双异质结无毒金属氧化物纳米结构传感器的实验评估
报告对基于 BaTiO3 (B)、ZnO (Z) 和 BaTiO3/ZnO (B/Z) 的传感器进行了系统的实验解释,这些传感器是通过一种基于溶液的简便方法制造的。对制作的所有传感器进行的结构特性分析表明,它们都形成了各自的特征主峰(B、Z 和 B/Z 分别为六方、四方和异质结构(六方和四方))。从陶克图分析中可以明显看出,双异质结的形成导致带隙(2.97 eV-B/Z)减小。对制作的多重传感传感器分别进行了气体(CO(一氧化碳)和 (CH4) 甲烷)和加速度传感系统测试,以探索其传感特性。相比之下,B/Z 传感器在室温条件下对较低浓度(10 ppm)的一氧化碳气体(1.12∼2.2∼61.54)和甲烷气体(4.12∼58.69∼14)表现出更好的响应时间(秒)、恢复时间(秒)和传感器响应(%)。同样,与其他制作的传感器相比,B/Z 传感器在 13 Hz 谐振频率下的最大输出电压为 2.31 V,灵敏度为 1.9316 Vg-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信