Laiquan Wang, Sami Ullah Khan, Farman U Khan, Salman A AlQahtani, Atif M Alamri
{"title":"Advancing COVID-19 stochastic modeling: a comprehensive examination integrating vaccination classes through higher-order spectral scheme analysis.","authors":"Laiquan Wang, Sami Ullah Khan, Farman U Khan, Salman A AlQahtani, Atif M Alamri","doi":"10.1080/10255842.2024.2319276","DOIUrl":null,"url":null,"abstract":"<p><p>This research article presents a comprehensive analysis aimed at enhancing the stochastic modeling of COVID-19 dynamics by incorporating vaccination classes through a higher-order spectral scheme. The ongoing COVID-19 pandemic has underscored the critical need for accurate and adaptable modeling techniques to inform public health interventions. In this study, we introduce a novel approach that integrates various vaccination classes into a stochastic model to provide a more nuanced understanding of disease transmission dynamics. We employ a higher-order spectral scheme to capture complex interactions between different population groups, vaccination statuses, and disease parameters. Our analysis not only enhances the predictive accuracy of COVID-19 modeling but also facilitates the exploration of various vaccination strategies and their impact on disease control. The findings of this study hold significant implications for optimizing vaccination campaigns and guiding policy decisions in the ongoing battle against the COVID-19 pandemic.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1409-1423"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2319276","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This research article presents a comprehensive analysis aimed at enhancing the stochastic modeling of COVID-19 dynamics by incorporating vaccination classes through a higher-order spectral scheme. The ongoing COVID-19 pandemic has underscored the critical need for accurate and adaptable modeling techniques to inform public health interventions. In this study, we introduce a novel approach that integrates various vaccination classes into a stochastic model to provide a more nuanced understanding of disease transmission dynamics. We employ a higher-order spectral scheme to capture complex interactions between different population groups, vaccination statuses, and disease parameters. Our analysis not only enhances the predictive accuracy of COVID-19 modeling but also facilitates the exploration of various vaccination strategies and their impact on disease control. The findings of this study hold significant implications for optimizing vaccination campaigns and guiding policy decisions in the ongoing battle against the COVID-19 pandemic.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.