Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study.

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Haoyan Li, Zhentao Li, Shuaiyi Gao, Jiaqi Hu, Zhihao Yang, Yun Peng, Jihang Sun
{"title":"Performance evaluation of deep learning image reconstruction algorithm for dual-energy spectral CT imaging: A phantom study.","authors":"Haoyan Li, Zhentao Li, Shuaiyi Gao, Jiaqi Hu, Zhihao Yang, Yun Peng, Jihang Sun","doi":"10.3233/XST-230333","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To evaluate the performance of deep learning image reconstruction (DLIR) algorithm in dual-energy spectral CT (DEsCT) as a function of radiation dose and image energy level, in comparison with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction-V (ASIR-V) algorithms.</p><p><strong>Methods: </strong>An ACR464 phantom was scanned with DEsCT at four dose levels (3.5 mGy, 5 mGy, 7.5 mGy, and 10 mGy). Virtual monochromatic images were reconstructed at five energy levels (40 keV, 50 keV, 68 keV, 74 keV, and 140 keV) using FBP, 50% and 100% ASIR-V, DLIR at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) settings. The noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed and compared among reconstructions.</p><p><strong>Results: </strong>NPS area and noise increased as keV decreased, with DLIR having slower increase than FBP and ASIR-V, and DLIR-H having the lowest values. DLIR had the best 40 keV/140 keV noise ratio at various energy levels, DLIR showed higher TTF (50%) than ASIR-V for all materials, especially for the soft tissue-like polystyrene insert, and DLIR-M and DLIR-H provided higher d' than DLIR-L, ASIR-V and FBP in all dose and energy levels. As keV increases, d' increased for acrylic insert, and d' of the 50 keV DLIR-M and DLIR-H images at 3.5 mGy (7.39 and 8.79, respectively) were higher than that (7.20) of the 50 keV ASIR-V50% images at 10 mGy.</p><p><strong>Conclusions: </strong>DLIR provides better noise containment for low keV images in DEsCT and higher TTF(50%) for the polystyrene insert over ASIR-V. DLIR-H has the lowest image noise and highest detectability in all dose and energy levels. DEsCT 50 keV images with DLIR-M and DLIR-H show potential for 65% dose reduction over ASIR-V50% withhigher d'.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"513-528"},"PeriodicalIF":1.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/XST-230333","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To evaluate the performance of deep learning image reconstruction (DLIR) algorithm in dual-energy spectral CT (DEsCT) as a function of radiation dose and image energy level, in comparison with filtered-back-projection (FBP) and adaptive statistical iterative reconstruction-V (ASIR-V) algorithms.

Methods: An ACR464 phantom was scanned with DEsCT at four dose levels (3.5 mGy, 5 mGy, 7.5 mGy, and 10 mGy). Virtual monochromatic images were reconstructed at five energy levels (40 keV, 50 keV, 68 keV, 74 keV, and 140 keV) using FBP, 50% and 100% ASIR-V, DLIR at low (DLIR-L), medium (DLIR-M), and high (DLIR-H) settings. The noise power spectrum (NPS), task-based transfer function (TTF) and detectability index (d') were computed and compared among reconstructions.

Results: NPS area and noise increased as keV decreased, with DLIR having slower increase than FBP and ASIR-V, and DLIR-H having the lowest values. DLIR had the best 40 keV/140 keV noise ratio at various energy levels, DLIR showed higher TTF (50%) than ASIR-V for all materials, especially for the soft tissue-like polystyrene insert, and DLIR-M and DLIR-H provided higher d' than DLIR-L, ASIR-V and FBP in all dose and energy levels. As keV increases, d' increased for acrylic insert, and d' of the 50 keV DLIR-M and DLIR-H images at 3.5 mGy (7.39 and 8.79, respectively) were higher than that (7.20) of the 50 keV ASIR-V50% images at 10 mGy.

Conclusions: DLIR provides better noise containment for low keV images in DEsCT and higher TTF(50%) for the polystyrene insert over ASIR-V. DLIR-H has the lowest image noise and highest detectability in all dose and energy levels. DEsCT 50 keV images with DLIR-M and DLIR-H show potential for 65% dose reduction over ASIR-V50% withhigher d'.

用于双能谱 CT 成像的深度学习图像重建算法的性能评估:模型研究
目的评估深度学习图像重建(DLIR)算法在双能谱 CT(DEsCT)中的性能,并将其与滤波后投影(FBP)算法和自适应统计迭代重建-V(ASIR-V)算法进行比较,看其是否与辐射剂量和图像能量水平相关:用四种剂量水平(3.5 mGy、5 mGy、7.5 mGy 和 10 mGy)的 DEsCT 扫描 ACR464 模型。使用 FBP、50% 和 100% ASIR-V、低 (DLIR-L)、中 (DLIR-M) 和高 (DLIR-H) DLIR 设置,在五个能量水平(40 keV、50 keV、68 keV、74 keV 和 140 keV)下重建虚拟单色图像。计算噪声功率谱(NPS)、基于任务的传递函数(TTF)和可探测性指数(d'),并对重建结果进行比较:结果:NPS 面积和噪声随着 keV 值的降低而增加,DLIR 的增加速度比 FBP 和 ASIR-V 慢,DLIR-H 的值最低。在各种能量水平下,DLIR 的 40 keV/140 keV 噪声比最佳;在所有材料中,DLIR 的 TTF(50%)均高于 ASIR-V,尤其是在软组织类聚苯乙烯插入物中;在所有剂量和能量水平下,DLIR-M 和 DLIR-H 的 d' 均高于 DLIR-L、ASIR-V 和 FBP。随着 keV 的增加,丙烯酸插入物的 d'也在增加,在 3.5 mGy 时,50 keV DLIR-M 和 DLIR-H 图像的 d'(分别为 7.39 和 8.79)高于 10 mGy 时 50 keV ASIR-V50% 图像的 d'(7.20):结论:与 ASIR-V 相比,DLIR 能更好地抑制 DEsCT 低 keV 图像的噪声,并能为聚苯乙烯插入物提供更高的 TTF(50%)。在所有剂量和能量水平下,DLIR-H 的图像噪声最低,可探测性最高。使用 DLIR-M 和 DLIR-H 的 DEsCT 50 keV 图像显示,与 ASIR-V 相比,D'较高时可减少 65% 的剂量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信