{"title":"A Multi-Layer Stacked Microfluidic Tactile Display With High Spatial Resolution.","authors":"Boxue Shan, Congying Liu, Yuan Guo, Yiheng Wang, Weidong Guo, Yuru Zhang, Dangxiao Wang","doi":"10.1109/TOH.2024.3367708","DOIUrl":null,"url":null,"abstract":"<p><p>Pneumatic tactile displays dynamically customize surface morphological features with reconfigurable arrays of independently addressable actuators. However, their ability to render detailed tactile patterns or fine textures is limited by the low spatial resolution. For pneumatic tactile displays, the high-density integration of pneumatic actuators within a small space (fingertip) poses a significant challenge in terms of pneumatic circuit wiring. In contrast to the structure with a single-layer layout of pipes, we propose a multi-layered stacked microfluidic pipe structure that allows for a higher density of actuators and retains their independent actuation capabilities. Based on the proposed structure, we developed a soft microfluidic tactile display with a spatial resolution of 1.25 mm. The device consists of a 5 × 5 array of independently addressable microactuators, driven by pneumatic pressure, each of which enables independent actuation of the surface film and continuous control of the height. At a relative pressure of 1000 mbar, the actuator produced a perceptible out-of-plane deformation of 0.145 mm and a force of 17.7 mN. User studies showed that subjects can easily distinguish eight tactile patterns with 96% accuracy.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3367708","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Pneumatic tactile displays dynamically customize surface morphological features with reconfigurable arrays of independently addressable actuators. However, their ability to render detailed tactile patterns or fine textures is limited by the low spatial resolution. For pneumatic tactile displays, the high-density integration of pneumatic actuators within a small space (fingertip) poses a significant challenge in terms of pneumatic circuit wiring. In contrast to the structure with a single-layer layout of pipes, we propose a multi-layered stacked microfluidic pipe structure that allows for a higher density of actuators and retains their independent actuation capabilities. Based on the proposed structure, we developed a soft microfluidic tactile display with a spatial resolution of 1.25 mm. The device consists of a 5 × 5 array of independently addressable microactuators, driven by pneumatic pressure, each of which enables independent actuation of the surface film and continuous control of the height. At a relative pressure of 1000 mbar, the actuator produced a perceptible out-of-plane deformation of 0.145 mm and a force of 17.7 mN. User studies showed that subjects can easily distinguish eight tactile patterns with 96% accuracy.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.