Yan Wang , Hui-Wen Gu , Xiao-Li Yin , Tao Geng , Wanjun Long , Haiyan Fu , Yuanbin She
{"title":"Deep leaning in food safety and authenticity detection: An integrative review and future prospects","authors":"Yan Wang , Hui-Wen Gu , Xiao-Li Yin , Tao Geng , Wanjun Long , Haiyan Fu , Yuanbin She","doi":"10.1016/j.tifs.2024.104396","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety.</p></div><div><h3>Scope and approach</h3><p>This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field.</p></div><div><h3>Key findings and conclusions</h3><p>Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.</p></div>","PeriodicalId":441,"journal":{"name":"Trends in Food Science & Technology","volume":"146 ","pages":"Article 104396"},"PeriodicalIF":15.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Food Science & Technology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924224424000724","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Food safety is an important public health issue, and deep learning (DL) algorithms can provide powerful tools and methods for food safety and authenticity detection. Compared with chemometric algorithms and traditional machine learning algorithms, the performances of DL algorithms are improved in many aspects. By learning and analyzing a large amount of data, DL models can improve the efficiency and accuracy of food safety and authenticity detection, helping to ensure the public health and safety.
Scope and approach
This paper reviews some commonly used chemometric algorithms, traditional machine learning algorithms, and popular DL algorithms. Among them, special attentions are paid to convolutional neural network (CNN), fully convolutional network (FCN) and generative adversarial network (GAN). Moreover, the auxiliary effect of GAN on CNN is highlighted. Finally, this paper revisits recent applications of DL algorithms in the field of food safety and authenticity detection, and prospects the challenges and future directions of DL algorithms in this field.
Key findings and conclusions
Although DL has made many achievements in the field of food safety and authenticity detection, there is still a great potential for development. For example, the data augmentation function of GAN can assist CNN to obtain more training samples, thus improving the recognition rate. In addition, multimodal neural network (MNN) or multimodal attention network (MAN) can be also used to achieve the fusion of data from different modalities to further improve the robustness and accuracy of DL algorithms.
期刊介绍:
Trends in Food Science & Technology is a prestigious international journal that specializes in peer-reviewed articles covering the latest advancements in technology, food science, and human nutrition. It serves as a bridge between specialized primary journals and general trade magazines, providing readable and scientifically rigorous reviews and commentaries on current research developments and their potential applications in the food industry.
Unlike traditional journals, Trends in Food Science & Technology does not publish original research papers. Instead, it focuses on critical and comprehensive reviews to offer valuable insights for professionals in the field. By bringing together cutting-edge research and industry applications, this journal plays a vital role in disseminating knowledge and facilitating advancements in the food science and technology sector.