Research and implementation of fault data recovery method for dry-type transformer temperature control sensor based on ISSA-LSTM algorithm

IF 5.6 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Qingqing Wang , Mingze Zheng , Kun Yang , Chunxue Shang , Yi Luo
{"title":"Research and implementation of fault data recovery method for dry-type transformer temperature control sensor based on ISSA-LSTM algorithm","authors":"Qingqing Wang ,&nbsp;Mingze Zheng ,&nbsp;Kun Yang ,&nbsp;Chunxue Shang ,&nbsp;Yi Luo","doi":"10.1016/j.measurement.2024.114333","DOIUrl":null,"url":null,"abstract":"<div><p>This study proposes a temperature control sensor fault data recovery model based on the improved Sparrow Search Algorithm (ISSA) optimizing Long Short-Term Memory (LSTM) to address erroneous data output caused by temperature monitoring sensor failures in dry-type transformers. The model aims to recover faulty sensor data in dynamic processes. It enhances the algorithm by initializing the population using Tent chaotic mapping, employing t-distribution and differential variation perturbations, and introducing a dynamic step size factor. Simulation experiments evaluated the performance of ISSA-LSTM, SSA-LSTM, PSO-LSTM, GA-LSTM, and ACSA-LSTM algorithms. The ISSA-LSTM model outperforms the worst PSO-LSTM model by 82.6%, 82.1%, and 1.8% in terms of MAE, RMSE and <span><math><mrow><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></mrow></math></span> values, respectively. Field experiments confirmed the algorithm's effectiveness in recovering data from faulty sensors and different fault types, improving the accuracy and stability of temperature control sensor fault data recovery in dry-type transformers.</p></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"228 ","pages":"Article 114333"},"PeriodicalIF":5.6000,"publicationDate":"2024-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224124002173","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study proposes a temperature control sensor fault data recovery model based on the improved Sparrow Search Algorithm (ISSA) optimizing Long Short-Term Memory (LSTM) to address erroneous data output caused by temperature monitoring sensor failures in dry-type transformers. The model aims to recover faulty sensor data in dynamic processes. It enhances the algorithm by initializing the population using Tent chaotic mapping, employing t-distribution and differential variation perturbations, and introducing a dynamic step size factor. Simulation experiments evaluated the performance of ISSA-LSTM, SSA-LSTM, PSO-LSTM, GA-LSTM, and ACSA-LSTM algorithms. The ISSA-LSTM model outperforms the worst PSO-LSTM model by 82.6%, 82.1%, and 1.8% in terms of MAE, RMSE and R2 values, respectively. Field experiments confirmed the algorithm's effectiveness in recovering data from faulty sensors and different fault types, improving the accuracy and stability of temperature control sensor fault data recovery in dry-type transformers.

基于 ISSA-LSTM 算法的干式变压器温度控制传感器故障数据恢复方法研究与实现
本研究提出了一种基于改进的麻雀搜索算法(ISSA)优化长短期记忆(LSTM)的温度控制传感器故障数据恢复模型,以解决干式变压器中温度监测传感器故障引起的错误数据输出问题。该模型旨在恢复动态过程中的故障传感器数据。它通过使用 Tent 混沌映射初始化种群、采用 t 分布和微分变化扰动以及引入动态步长因子来增强算法。仿真实验评估了 ISSA-LSTM、SSA-LSTM、PSO-LSTM、GA-LSTM 和 ACSA-LSTM 算法的性能。在 MAE、RMSE 和数值方面,ISSA-LSTM 模型分别比最差的 PSO-LSTM 模型高出 82.6%、82.1% 和 1.8%。现场实验证实了该算法在从故障传感器和不同故障类型中恢复数据方面的有效性,提高了干式变压器温度控制传感器故障数据恢复的准确性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信