Hao Dong, Haitao Wu, Guan Yang, Junming Zhang, Keqin Wan
{"title":"A multi-branch convolutional neural network for snoring detection based on audio.","authors":"Hao Dong, Haitao Wu, Guan Yang, Junming Zhang, Keqin Wan","doi":"10.1080/10255842.2024.2317438","DOIUrl":null,"url":null,"abstract":"<p><p>Obstructive sleep apnea (OSA) is associated with various health complications, and snoring is a prominent characteristic of this disorder. Therefore, the exploration of a concise and effective method for detecting snoring has consistently been a crucial aspect of sleep medicine. As the easily accessible data, the identification of snoring through sound analysis offers a more convenient and straightforward method. The objective of this study was to develop a convolutional neural network (CNN) for classifying snoring and non-snoring events based on audio. This study utilized Mel-frequency cepstral coefficients (MFCCs) as a method for extracting features during the preprocessing of raw data. In order to extract multi-scale features from the frequency domain of sound sources, this study proposes the utilization of a multi-branch convolutional neural network (MBCNN) for the purpose of classification. The network utilized asymmetric convolutional kernels to acquire additional information, while the adoption of one-hot encoding labels aimed to mitigate the impact of labels. The experiment tested the network's performance by utilizing a publicly available dataset consisting of 1,000 sound samples. The test results indicate that the MBCNN achieved a snoring detection accuracy of 99.5%. The integration of multi-scale features and the implementation of MBCNN, based on audio data, have demonstrated a substantial improvement in the performance of snoring classification.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1243-1254"},"PeriodicalIF":1.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2317438","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Obstructive sleep apnea (OSA) is associated with various health complications, and snoring is a prominent characteristic of this disorder. Therefore, the exploration of a concise and effective method for detecting snoring has consistently been a crucial aspect of sleep medicine. As the easily accessible data, the identification of snoring through sound analysis offers a more convenient and straightforward method. The objective of this study was to develop a convolutional neural network (CNN) for classifying snoring and non-snoring events based on audio. This study utilized Mel-frequency cepstral coefficients (MFCCs) as a method for extracting features during the preprocessing of raw data. In order to extract multi-scale features from the frequency domain of sound sources, this study proposes the utilization of a multi-branch convolutional neural network (MBCNN) for the purpose of classification. The network utilized asymmetric convolutional kernels to acquire additional information, while the adoption of one-hot encoding labels aimed to mitigate the impact of labels. The experiment tested the network's performance by utilizing a publicly available dataset consisting of 1,000 sound samples. The test results indicate that the MBCNN achieved a snoring detection accuracy of 99.5%. The integration of multi-scale features and the implementation of MBCNN, based on audio data, have demonstrated a substantial improvement in the performance of snoring classification.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.