{"title":"Cournot–Bertrand Duopoly Model: Dynamic Analysis Based on a Computed Cost","authors":"S. S. Askar, Ahmed M. Alshamrani","doi":"10.1155/2024/5594918","DOIUrl":null,"url":null,"abstract":"<p>In this paper, some mathematical properties and dynamic investigations of a Cournot–Bertrand duopoly game using a computed nonlinear cost are studied. The game is repeated and its evolution is presented by noninvertible map. The fixed points for this map are calculated and their stability conditions are discussed. One of those fixed points is Nash equilibrium, and the discussion shows that it can be unstable through flip and Neimark–Sacker bifurcation. The invariant manifold for the game’s map is analyzed. Furthermore, the case when both competing firms are independent is investigated. Due to unsymmetrical structure of the game’s map, global analysis gives rise to complicated basin of attraction for some attracting sets. The topological structure for these basins of attraction shows that escaping (infeasible) domain for some attracting sets becomes unconnected and the rise of holes is obtained. This confirms the existence of contact bifurcation.</p>","PeriodicalId":50653,"journal":{"name":"Complexity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complexity","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/5594918","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, some mathematical properties and dynamic investigations of a Cournot–Bertrand duopoly game using a computed nonlinear cost are studied. The game is repeated and its evolution is presented by noninvertible map. The fixed points for this map are calculated and their stability conditions are discussed. One of those fixed points is Nash equilibrium, and the discussion shows that it can be unstable through flip and Neimark–Sacker bifurcation. The invariant manifold for the game’s map is analyzed. Furthermore, the case when both competing firms are independent is investigated. Due to unsymmetrical structure of the game’s map, global analysis gives rise to complicated basin of attraction for some attracting sets. The topological structure for these basins of attraction shows that escaping (infeasible) domain for some attracting sets becomes unconnected and the rise of holes is obtained. This confirms the existence of contact bifurcation.
期刊介绍:
Complexity is a cross-disciplinary journal focusing on the rapidly expanding science of complex adaptive systems. The purpose of the journal is to advance the science of complexity. Articles may deal with such methodological themes as chaos, genetic algorithms, cellular automata, neural networks, and evolutionary game theory. Papers treating applications in any area of natural science or human endeavor are welcome, and especially encouraged are papers integrating conceptual themes and applications that cross traditional disciplinary boundaries. Complexity is not meant to serve as a forum for speculation and vague analogies between words like “chaos,” “self-organization,” and “emergence” that are often used in completely different ways in science and in daily life.