Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance.

Cell host & microbe Pub Date : 2024-03-13 Epub Date: 2024-02-14 DOI:10.1016/j.chom.2024.01.012
Marinelle Rodrigues, Parastoo Sabaeifard, Muhammed Sadik Yildiz, Adam Lyon, Laura Coughlin, Sara Ahmed, Nicole Poulides, Ahmet C Toprak, Cassie Behrendt, Xiaoyu Wang, Marguerite Monogue, Jiwoong Kim, Shuheng Gan, Xiaowei Zhan, Laura Filkins, Noelle S Williams, Lora V Hooper, Andrew Y Koh, Erdal Toprak
{"title":"Susceptible bacteria can survive antibiotic treatment in the mammalian gastrointestinal tract without evolving resistance.","authors":"Marinelle Rodrigues, Parastoo Sabaeifard, Muhammed Sadik Yildiz, Adam Lyon, Laura Coughlin, Sara Ahmed, Nicole Poulides, Ahmet C Toprak, Cassie Behrendt, Xiaoyu Wang, Marguerite Monogue, Jiwoong Kim, Shuheng Gan, Xiaowei Zhan, Laura Filkins, Noelle S Williams, Lora V Hooper, Andrew Y Koh, Erdal Toprak","doi":"10.1016/j.chom.2024.01.012","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, \"some\" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, \"some\" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing \"select\" gastrointestinal bacteria to evade antibiotic treatment.</p>","PeriodicalId":93926,"journal":{"name":"Cell host & microbe","volume":" ","pages":"396-410.e6"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.01.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/14 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.

易感细菌 "可以 "在哺乳动物胃肠道中经受抗生素治疗而不产生抗药性。
人们对抗生素的耐药性和规避性的了解并不全面,而且小鼠间隔给药模型并不能完全再现人类的抗生素药代动力学,这使问题变得更加复杂。为了更好地了解胃肠道细菌是如何对抗生素做出反应的,我们在无菌小鼠体内定植了泛敏感基因条形码大肠埃希菌临床分离株,并通过可编程皮下泵注射抗生素头孢吡肟,从而更接近地模拟了人类肠外抗生素的药代动力学。大肠杆菌只从肠道组织中回收,而头孢吡肟的浓度对肠道组织仍有抑制作用。令人吃惊的是,"一些 "大肠杆菌分离株对头孢吡肟没有抗药性,但它们参与多糖胶囊合成的基因发生了突变,从而增加了它们在人类肠道细胞内的侵袭和存活率。删除参与胶囊多糖合成的 wbaP 可模拟这种表型,从而增加对头孢吡肟浓度降低的结肠细胞的侵袭。此外,"一些 "突变菌株在进一步暴露于头孢吡肟时会表现出持久性表型。这项研究揭示了一种允许 "特定 "胃肠道细菌逃避抗生素治疗的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信