Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Piyush Kumar;Da Eun Shim;Siri Narla;Azad Naeemi
{"title":"Impact of Technology Scaling and Back-End-of-the-Line Technology Solutions on Magnetic Random-Access Memories","authors":"Piyush Kumar;Da Eun Shim;Siri Narla;Azad Naeemi","doi":"10.1109/JXCDC.2024.3357625","DOIUrl":null,"url":null,"abstract":"While magnetic random-access memories (MRAMs) are promising because of their nonvolatility, relatively fast speeds, and high endurance, there are major challenges in adopting them for the advanced technology nodes. One of the major challenges in scaling MRAM devices is caused by the ever-increasing resistances of interconnects. In this article, we first study the impact of shrunk interconnect dimensions on MRAM performance at various technology nodes. Then, we investigate the impact of various potential back-end-of-the-line (BEOL) technology solutions at the 7 nm node. Based on interconnect resistance values from technology computer-aided design (TCAD) simulations and MRAM device characteristics from experimentally validated/calibrated physical models, we quantify the potential array-level performance of MRAM using SPICE simulations. We project that some potential BEOL technology solutions can reduce the write energy by up to 34.6% with spin–orbit torque (SOT) MRAM and 29.0% with spin-transfer torque (STT) MRAM. We also observe up to 21.4% reduction in the read energy of the SOT-MRAM arrays.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"13-21"},"PeriodicalIF":2.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10412202","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10412202/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

While magnetic random-access memories (MRAMs) are promising because of their nonvolatility, relatively fast speeds, and high endurance, there are major challenges in adopting them for the advanced technology nodes. One of the major challenges in scaling MRAM devices is caused by the ever-increasing resistances of interconnects. In this article, we first study the impact of shrunk interconnect dimensions on MRAM performance at various technology nodes. Then, we investigate the impact of various potential back-end-of-the-line (BEOL) technology solutions at the 7 nm node. Based on interconnect resistance values from technology computer-aided design (TCAD) simulations and MRAM device characteristics from experimentally validated/calibrated physical models, we quantify the potential array-level performance of MRAM using SPICE simulations. We project that some potential BEOL technology solutions can reduce the write energy by up to 34.6% with spin–orbit torque (SOT) MRAM and 29.0% with spin-transfer torque (STT) MRAM. We also observe up to 21.4% reduction in the read energy of the SOT-MRAM arrays.
技术扩展和后端技术解决方案对磁随机存取存储器的影响
虽然磁性随机存取存储器(MRAM)因其非挥发性、相对较快的速度和较高的耐用性而前景广阔,但在先进技术节点上采用它们却面临着重大挑战。扩展 MRAM 器件的主要挑战之一是互连电阻的不断增加。在本文中,我们首先研究了在不同技术节点上缩小互连尺寸对 MRAM 性能的影响。然后,我们研究了 7 纳米节点上各种潜在的后端 (BEOL) 技术解决方案的影响。根据技术计算机辅助设计 (TCAD) 仿真得出的互连电阻值和实验验证/校准物理模型得出的 MRAM 器件特性,我们利用 SPICE 仿真量化了 MRAM 的潜在阵列级性能。我们预测,一些潜在的 BEOL 技术解决方案可以将自旋轨道力矩 (SOT) MRAM 的写入能量最多降低 34.6%,将自旋转移力矩 (STT) MRAM 的写入能量最多降低 29.0%。我们还发现,SOT-MRAM 阵列的读取能量最多可降低 21.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信