Martha Gahl*, Hyun Woo Kim, Evgenia Glukhov, William H. Gerwick and Garrison W. Cottrell,
{"title":"PECAN Predicts Patterns of Cancer Cell Cytostatic Activity of Natural Products Using Deep Learning","authors":"Martha Gahl*, Hyun Woo Kim, Evgenia Glukhov, William H. Gerwick and Garrison W. Cottrell, ","doi":"10.1021/acs.jnatprod.3c00879","DOIUrl":null,"url":null,"abstract":"<p >Many machine learning techniques are used as drug discovery tools with the intent to speed characterization by determining relationships between compound structure and biological function. However, particularly in anticancer drug discovery, these models often make only binary decisions about the biological activity for a narrow scope of drug targets. We present a feed-forward neural network, PECAN (Prediction Engine for the Cytostatic Activity of Natural product-like compounds), that simultaneously classifies the potential antiproliferative activity of compounds against 59 cancer cell lines. It predicts the activity to be one of six categories, indicating not only if activity is present but the degree of activity. Using an independent subset of NCI data as a test set, we show that PECAN can reach 60.1% accuracy in a six-way classification and present further evidence that it classifies based on useful structural features of compounds using a “within-one” measure that reaches 93.0% accuracy.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":"87 3","pages":"567–575"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.jnatprod.3c00879","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jnatprod.3c00879","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Many machine learning techniques are used as drug discovery tools with the intent to speed characterization by determining relationships between compound structure and biological function. However, particularly in anticancer drug discovery, these models often make only binary decisions about the biological activity for a narrow scope of drug targets. We present a feed-forward neural network, PECAN (Prediction Engine for the Cytostatic Activity of Natural product-like compounds), that simultaneously classifies the potential antiproliferative activity of compounds against 59 cancer cell lines. It predicts the activity to be one of six categories, indicating not only if activity is present but the degree of activity. Using an independent subset of NCI data as a test set, we show that PECAN can reach 60.1% accuracy in a six-way classification and present further evidence that it classifies based on useful structural features of compounds using a “within-one” measure that reaches 93.0% accuracy.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.