{"title":"Impact of salicylic acid and sodium hydrosulfide applied singly or in combination on drought tolerance and grain yield in wheat plants","authors":"Sabri Akin, Cengiz Kaya","doi":"10.1002/fes3.532","DOIUrl":null,"url":null,"abstract":"<p>Climate change-induced drought stress (DS) poses a significant threat to crop production, emphasizing the need for innovative strategies to mitigate its adverse effects. Prior studies have demonstrated the distinct capacities of salicylic acid (SA) and sodium hydrosulfide (NaHS) to augment plant resilience against drought-related stressors. However, little is known about how they work together or the specific processes by which they increase DS tolerance. The purpose of this research was to determine how SA and NaHS affected the performance of wheat plants during the growing seasons of 2021–2022 and 2022–2023, when there was a drought. The research employed a block-randomized experimental layout with split plots, where the primary factors included two irrigation levels: full irrigation (IW1, 100% of water requirement) and deficit irrigation (IW2, 50% of water requirement). Secondary factors included the application of mock control, 0.5 mM SA, and 0.3 mM NaHS, an H<sub>2</sub>S donor, either individually or in combination, administered before the onset of DS. The application of SA, NaHS, or their combination significantly enhanced wheat plant resistance to DS. Significant increases in a number of physiological markers, including proline content, relative water content (RWC), Fv/Fm, chlorophyll content, and antioxidant enzyme activity, demonstrated this improvement. Furthermore, in drought-stressed wheat plants, SA and NaHS treatments decreased the amounts of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA) content, and electrolyte leakage (EL). In conclusion, our study highlights the possibility of SA and NaHS, whether applied individually or in combination, to improve drought resistance in wheat plants, presenting a viable approach to lessen the effects of climate change on agricultural yield.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.532","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.532","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change-induced drought stress (DS) poses a significant threat to crop production, emphasizing the need for innovative strategies to mitigate its adverse effects. Prior studies have demonstrated the distinct capacities of salicylic acid (SA) and sodium hydrosulfide (NaHS) to augment plant resilience against drought-related stressors. However, little is known about how they work together or the specific processes by which they increase DS tolerance. The purpose of this research was to determine how SA and NaHS affected the performance of wheat plants during the growing seasons of 2021–2022 and 2022–2023, when there was a drought. The research employed a block-randomized experimental layout with split plots, where the primary factors included two irrigation levels: full irrigation (IW1, 100% of water requirement) and deficit irrigation (IW2, 50% of water requirement). Secondary factors included the application of mock control, 0.5 mM SA, and 0.3 mM NaHS, an H2S donor, either individually or in combination, administered before the onset of DS. The application of SA, NaHS, or their combination significantly enhanced wheat plant resistance to DS. Significant increases in a number of physiological markers, including proline content, relative water content (RWC), Fv/Fm, chlorophyll content, and antioxidant enzyme activity, demonstrated this improvement. Furthermore, in drought-stressed wheat plants, SA and NaHS treatments decreased the amounts of hydrogen peroxide (H2O2), malondialdehyde (MDA) content, and electrolyte leakage (EL). In conclusion, our study highlights the possibility of SA and NaHS, whether applied individually or in combination, to improve drought resistance in wheat plants, presenting a viable approach to lessen the effects of climate change on agricultural yield.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology