Fabio Dal Bello, Laetitia Bocquet, Audrey Bru, Svend Laulund, Ronnie Machielsen, Matteo Raneri, Vincent Sewalt, Noël van Peij, Patrice Ville, Federica Volonté, Yolanda White, Jakub Rusek
{"title":"New Genomic Techniques applied to food cultures: a powerful contribution to innovative, safe, and sustainable food products.","authors":"Fabio Dal Bello, Laetitia Bocquet, Audrey Bru, Svend Laulund, Ronnie Machielsen, Matteo Raneri, Vincent Sewalt, Noël van Peij, Patrice Ville, Federica Volonté, Yolanda White, Jakub Rusek","doi":"10.1093/femsle/fnae010","DOIUrl":null,"url":null,"abstract":"<p><p>Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10890814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nontransgenic New Genomic Techniques (NGTs) have emerged as a promising tool for food industries, allowing food cultures to contribute to an innovative, safe, and more sustainable food system. NGTs have the potential to be applied to microorganisms, delivering on challenging performance traits like texture, flavour, and an increase of nutritional value. This paper brings insights on how nontransgenic NGTs applied to food cultures could be beneficial to the sector, enabling food industries to generate innovative, safe, and sustainable products for European consumers. Microorganisms derived from NGTs have the potentials of becoming an important contribution to achieve the ambitious targets set by the European 'Green Deal' and 'Farm to Fork' policies. To encourage the development of NGT-derived microorganisms, the current EU regulatory framework should be adapted. These technologies allow the introduction of a precise, minimal DNA modification in microbial genomes resulting in optimized products carrying features that could also be achieved by spontaneous natural genetic evolution. The possibility to use NGTs as a tool to improve food safety, sustainability, and quality is the bottleneck in food culture developments, as it currently relies on lengthy natural evolution strategies or on untargeted random mutagenesis.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.