Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands

IF 28.7 1区 医学 Q1 NEUROSCIENCES
Clarissa M. D. Mota, Christopher J. Madden
{"title":"Neural circuits of long-term thermoregulatory adaptations to cold temperatures and metabolic demands","authors":"Clarissa M. D. Mota, Christopher J. Madden","doi":"10.1038/s41583-023-00785-8","DOIUrl":null,"url":null,"abstract":"The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia. Exposure to acute and long-term exposure to cold temperatures results in the activation of thermoregulatory mechanisms that are under CNS control. In this Review, Mota and Madden discuss long-term physiological adaptations to cold exposure, with an emphasis on the specific states of hibernation, torpor and obesity.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 3","pages":"143-158"},"PeriodicalIF":28.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-023-00785-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The mammalian brain controls heat generation and heat loss mechanisms that regulate body temperature and energy metabolism. Thermoeffectors include brown adipose tissue, cutaneous blood flow and skeletal muscle, and metabolic energy sources include white adipose tissue. Neural and metabolic pathways modulating the activity and functional plasticity of these mechanisms contribute not only to the optimization of function during acute challenges, such as ambient temperature changes, infection and stress, but also to longitudinal adaptations to environmental and internal changes. Exposure of humans to repeated and seasonal cold ambient conditions leads to adaptations in thermoeffectors such as habituation of cutaneous vasoconstriction and shivering. In animals that undergo hibernation and torpor, neurally regulated metabolic and thermoregulatory adaptations enable survival during periods of significant reduction in metabolic rate. In addition, changes in diet can activate accessory neural pathways that alter thermoeffector activity. This knowledge may be harnessed for therapeutic purposes, including treatments for obesity and improved means of therapeutic hypothermia. Exposure to acute and long-term exposure to cold temperatures results in the activation of thermoregulatory mechanisms that are under CNS control. In this Review, Mota and Madden discuss long-term physiological adaptations to cold exposure, with an emphasis on the specific states of hibernation, torpor and obesity.

Abstract Image

Abstract Image

长期体温调节适应低温和新陈代谢需求的神经回路。
哺乳动物的大脑控制着调节体温和能量代谢的产热和散热机制。热效应器包括棕色脂肪组织、皮肤血流和骨骼肌,代谢能量源包括白色脂肪组织。调节这些机制的活性和功能可塑性的神经和代谢途径不仅有助于在环境温度变化、感染和压力等急性挑战期间优化功能,还有助于纵向适应环境和内部变化。人类反复暴露在季节性寒冷环境中会导致体温效应器的适应性变化,如皮肤血管收缩和颤抖的习惯化。在经历冬眠和冬眠的动物中,神经调节的代谢和体温调节适应性使其能够在代谢率显著降低的时期存活下来。此外,饮食的变化也会激活附属神经通路,从而改变体温调节器的活动。这些知识可用于治疗目的,包括治疗肥胖症和改进低体温治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.60%
发文量
104
期刊介绍: Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信